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Abstract - Machine learning (ML) has been successfully applied 
across numerous disciplines to enhance efficiency and accuracy; 
however, most biological research laboratories continued to rely 
heavily on manual image processing approaches. While expert 
analysis was essential during the early experimental stages, the 
availability of sufficient datasets allowed ML algorithms to 
significantly accelerate image analysis and reduce human error. 
This motivation led to the development of a machine learning–
based image processing pipeline for biological imaging 
applications. An ML framework integrating Cellpose-based 
segmentation with Python automation was implemented and 
applied to four major areas: protein recruitment following DNA 
double-strand breaks (DSBs), calcium flux tracking in cortical 
neurons after laser-induced shockwave (LIS) injury, calcium 
response characterization in retinal ganglion cells (RGCs), and 
comparative calcium dynamics in Alzheimer’s disease (AD) 
cellular models. Controlled DSBs were introduced into U2OS 
cells by a robotic laser microscope system (Robolase), with 
proteins of interest labeled using green fluorescent protein 
(GFP). Sequential fluorescence images were acquired and 
processed through custom Python code. The algorithm 
automatically detected protein recruitment by quantifying GFP 
intensity changes over time and generated kinetic plots within 
minutes. Minimal code modifications allowed the pipeline to be 
extended to calcium flux analyses in neurons, RGCs, and AD-
affected cells. The automated pipelines considerably shortened 
the image processing time compared with manual methods, 

while maintaining high precision and scalability across 
biological applications. These findings demonstrated the 
potential of ML-enhanced imaging pipelines to advance studies 
of DNA damage repair, traumatic brain injury (TBI) modeling, 
and neurodegenerative disease. 
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1. Introduction 

The elucidation of the DNA double helix structure 
by Watson and Crick marked a turning point in the 
understanding of genetic material and emphasized its 
vulnerability to damage. Foundational studies by 
Meselson and Stahl established the principles of DNA 
replication and repair [1]. In the 1970s, Berns and 
colleagues introduced laser ablation as a highly precise 
method to induce cellular-level damage [2], enabling 
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controlled studies of biological injury [3]. Subsequent 
advancements in laser technology and live-cell imaging 
techniques allowed real-time monitoring of DNA repair 
processes, providing deeper insights into molecular 
mechanisms following double-strand breaks (DSBs) [4–
11]. 

Despite these technological advances, the analysis 
of large-scale time-lapse fluorescence imaging data 
remained labor-intensive, error-prone, and highly 
variable when performed manually. This limitation 
created a critical demand for automated, efficient, and 
reproducible methods. The integration of machine 
learning (ML) algorithms offered a promising solution by 
combining speed, accuracy, and scalability. In this study, 
an ML-driven image analysis framework was 
implemented to substantially accelerate data processing 
while maintaining reproducibility and precision. 

In parallel, laser-induced shockwaves (LIS) were 
increasingly employed as a model for traumatic brain 
injury (TBI), a condition of high relevance in both 
military and sports medicine. Investigations into blast-
related TBI dated back to the 1950s [12], evolving into 
extensive molecular and cellular studies over 
subsequent decades [13–14]. Initially developed for 
clinical applications such as gallstone lithotripsy [15], 
shockwave technology was later adapted to examine 
neural tissue injury, highlighting the importance of Ca²⁺ 
signaling mediated by cavitation microbubbles [16]. A 
specialized LIS system was developed in the 
Biophotonics Laboratory at UC San Diego to simulate 
blast-induced conditions at the cellular level, enabling 
detailed studies of neuronal and astrocytic calcium 
responses [17]. 

Traditional manual quantification of calcium 
fluctuations was inefficient and inconsistent. To 
overcome these limitations, the ML framework originally 
designed for DNA repair analysis was adapted to LIS 
experiments, integrating Python-based automation with 
advanced segmentation methods to enable rapid and 
precise quantification of calcium dynamics in cortical 
neurons and retinal ganglion cells (RGCs). 

Importantly, the same framework was further 
extended to neurodegenerative disease models where 
multiple fluorescence channels were required. In these 
cases, the pipeline was applied not only to monitor 
calcium flux before and after laser damage but also to 
relate the observed responses to cell survival status. In 
particular, calcium dynamics in mouse primary cortical 
neurons with and without Alzheimer’s disease were 
analyzed following LIS. Because cortical neurons are 

especially vulnerable to dysfunction in Alzheimer’s 
disease, this application provided key insights into early 
functional deficits associated with disease progression. 
While neuronal calcium transients were traditionally 
analyzed using MATLAB-based methods—often 
unstable, error-prone, and requiring extensive manual 
masking—the automated Python workflow enabled 
efficient, reliable, and reproducible analysis across 
multi-channel datasets. 

Beyond the technical details, the workflow was 

built for typical biomedical labs. It can run on a 

standard desktop, use open-source Python tools, and 

turn what hours of manual tracing were into minutes of 

automated analysis. The same code can be pointed at 

common image formats and adapted with small edits 

for related assays. 
 

2. Materials and System Setups 
2. 1. Laser Ablation System Setup 

A tunable femtosecond mode-locked Ti:Sapphire 
infrared laser (Mai Tai, Spectra-Physics, Newport Corp., 
Mountain View, CA) was used to generate the laser-
induced microirradiation for precise subcellular 
targeting. Laser power was attenuated via a motorized 
rotating optical polarizer (Newport, Irvine, CA), and 
pulse delivery was controlled by a mechanical shutter 
(Vincent Associates, Rochester, NY) with a 10 ms duty 
cycle. The laser beam was expanded to fill the back 
aperture of a 100× NA 1.3 Zeiss objective mounted on a 
Zeiss Axiovert 200M microscope and focused on the 
sample. Two-photon excitation was employed at either 
730 nm (effective 365 nm) or 800 nm (effective 400 nm) 
with laser powers of 50 mW and 60 mW, respectively, 
measured before entering the phase contrast objective. 
A custom-built Labview APP was programmed to 
facilitate high-resolution, real-time, live-cell imaging. 

 
2.2 U2OS Cell Lines for DNA Repair Study 

The preparation of U2OS (human osteosarcoma) 
cell lines was described previously in [18]. U2OS cells 
were obtained from the American Type Culture 
Collection (ATCC) cell repository. RPE-1 WT cells were 
received from Dr. Stephen P. Jackson’s lab. UWB1 and 
UWB1 reconstituted with BRCA1 cells were received 
from Dr. Lee Zou’s lab. Cells were cultured in Dulbecco’s 
modified Eagle’s medium (DMEM; Gibco) supplemented 
with 10% fetal bovine serum (FBS; GeminiBio.), 2mM L-
glutamine (Sigma-Aldrich), and 1% penicillin-
streptomycin containing glutamine (Gibco) at 37 °C in a 
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humid atmosphere containing 5% CO2. The U2OS (EGFP-
HR/STGC) reporter cell line was generated by the 
transfection of the EGFP-HR/STGC reporter into U2OS 
cells with polyethylenimine (PEI) using the standard 
protocol, followed by hygromycin B (100 µg/ml) 
selection. Double-strand breaks (DSBs) were introduced 
in live-cell nuclei through precision laser-induced 
microirradiation.  
 
2. 3. Laser-Induced Shockwave System Setup 

A Coherent Flare 532 nm laser system (100 Hz 
repetition rate, 2 ns pulse width, 450 μJ pulse energy; 
Spectra-Physics, Mountain View, CA) was used to 
generate localized shockwaves. Laser power was 
attenuated via a motorized rotating optical polarizer 
(Newport, Irvine, CA), and pulse delivery was controlled 
by a mechanical shutter (Vincent Associates, Rochester, 
NY) with a 10–15 ms duty cycle. The laser beam was 
expanded to fill the back aperture of a 40× NA 1.3 Zeiss 
objective mounted on a Zeiss 200M microscope and 
focused 10 μm above the substrate. The incident power 
measured before the objective was approximately 200–
220 μW. A Zeiss filter set 48 (436/20 nm excitation, 455 
nm long-pass dichroic mirror) was installed, with 
additional emission filters (535/30 nm for FRET, 480/40 
nm for ECFP) mounted on a LUDL motorized filter wheel, 
positioned before an ORCA-Flash4.0 V2 Hamamatsu 
CMOS camera for fluorescence imaging. 

 
2.4 Preparation for Cortical Neurons and RGC 

Mouse primary cortical neurons were cultured as 
described in (Gu et al., DOI: 10.1016/j.nbd.2024. 
106502). Cells were preloaded with Fluo-4 AM [17] to 
study calcium flux. LIS creates a cavitation bubble that 
expands and rapidly collapses, causing subsequent death 
to cells in the bubble's vicinity. A 1032 nm laser was 
focused 10 µm above the substrate, which contained the 
neurons.  

RGCs from postnatal (5 days) Sprague-Dawley rats 
were purified by immunopanning, separated, and 
cultured in a serum-free defined growth medium 
containing BDNF, CNTF, insulin, and forskolin. RGCs 
were dyed with Fluo-4, a calcium indicator. Fluorescence 
images were taken every 10 seconds for 5-25 minutes. 
The axon of an individual cell was then damaged by a 275 
µW laser 20 μm away from the cell soma. 

   

3. Results and Discussions 
3.1 Machine Learning-Driven Image Analysis for 
DNA Repair Dynamics Post-Laser Ablation 

One of the major bottlenecks traditionally 
encountered in live-cell DNA repair imaging was the 
labor-intensive task of manually analyzing hundreds to 
thousands of time-lapse fluorescence images to capture 
subtle recruitment events of repair proteins following 
laser ablation. To address this limitation and expedite 
the data analysis process, a robust machine learning 
pipeline was designed and adapted, building on the 
capabilities of Cellpose [19], a state-of-the-art deep 
learning segmentation framework in computational 
biology. 

A significant advancement was achieved by 
integrating automated cell detection, repair line 
identification, and intensity quantification into a single 
streamlined system. Multiple available methods from 
online repositories, published literature, and GitHub 
resources were extensively evaluated, and Cellpose was 
identified as the most versatile. The pre-trained 
convolutional neural networks (CNNs) in Cellpose were 
customized to specifically address the challenges 
associated with dynamic protein recruitment analysis 
following DNA damage. 

The workflow proceeded as follows: 
1. Batch Image Loading: Sequential fluorescence 

images capturing the recruitment of repair 
proteins were loaded for processing. These time-
lapse datasets represented the dynamic behavior 
of protein of interest at the sites of laser-induced 
DNA double-strand breaks as shown in Figure 1 

2. Automated Cell Segmentation: Each image 
underwent automated segmentation through 
Cellpose, which generated accurate cell masks and 
delineated nuclear boundaries with minimal 
manual intervention as shown in Figure 2. 

3. Cropped Region Extraction: Using the 
segmentation masks, individual cells were 
cropped and saved for high-precision analysis of 
protein recruitment. 

4. Recruitment Line Detection: The brightest pixel 
within each cropped cell was automatically 
identified as the initial recruitment signal at the 
laser cut site as shown in Figure 3 

5. Thresholding and Binary Mask Creation: 
Cropped images were normalized, thresholded, 
and converted into binary masks using OpenCV 
libraries, thereby improving signal-to-noise ratios 
and enhancing recruitment site visibility. 

6. Contour Detection and Line Segmentation: 
Contours were detected, and the laser-induced cut 
line was delineated by connecting the two farthest 
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points on the contour. This enabled precise spatial 
mapping of the recruitment process as shown in 
Figure 4. 

7. Quantitative Intensity Measurement: The mean 
fluorescence intensity along the laser cut line was 
calculated over time, providing a direct 
quantitative assessment of protein recruitment 
dynamics as shown in Figure 5. 

8. Data Export and Visualization: All quantified 
results were exported into structured CSV files, 
and fluorescence intensity plots were generated 
using Python-based visualization tools such as 
Matplotlib. 
This machine learning–driven pipeline not only 

reduced analysis time from several hours to a matter of 
minutes per dataset but also eliminated subjective bias 
associated with manual scoring. Furthermore, the 
framework demonstrated scalability, as the same code 
base could be adapted to additional cell types and 
experimental conditions with minimal modification. 

 

 
Figure 1. Red52 Expressed of U2OS Cells after Laser Ablation. 

Focal accumulation appeared along the laser path within 4 

minutes, marking recruitment onset at DSBs. 

 

 
Figure 2. Automated Cellpose segmentation of Figure 1 frames. 

Accurate nuclear/cell masks enable unbiased, per-cell 

quantification without manual tracing 
 

 
Figure 3. Automated detection of the recruitment line. The 

algorithm localized the brightest linear feature at the laser 

ablation site, standardizing where intensity was sampled over 

time. 
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Figure 4. Contour Detection and Line Segmentation of the 

damage track. Connecting extremal contour points yielded a 

consistent ROI for recruitment measurements across frames. 

 

 
Figure 5. Quantitative Intensity Measurement of the Red52 

recruitment along the ablated line vs. time on one cell in Figure 

4. Recruitment kinetics (rise and plateau) were captured within 

minutes, replacing manual measurement. (Axes labeled with a.u. 

and min.) 

 
3.2 Automated Image Processing of Cortical Cells 
Calcium Responses After Laser-Induced Shockwave 
Injury 

Building upon the expertise developed in 
automating DNA repair imaging analysis, the machine 
learning–driven methods were extended to two 
additional biological applications: the quantitative 
analysis of calcium dynamics in cortical neurons and 
retinal ganglion cells (RGCs) following laser-induced 
shockwave (LIS) injury. This extension represented a 
natural progression, as it leveraged the strengths of 
automated image segmentation and intensity 

quantification techniques to address another 
biologically complex problem. 

LIS systems simulated localized mechanical 
injuries at the cellular level, enabling the study of 
intracellular calcium fluxes, which served as critical 
early indicators of neuronal and astrocytic responses 
under traumatic brain injury (TBI) conditions. Manual 
analysis of the large volumes of time-lapse imaging data 
generated from these experiments was highly 
impractical and prone to observer bias. Consequently, an 
automated workflow was designed to systematically 
extract, quantify, and visualize calcium response 
patterns across hundreds of cells over multiple frames. 

The workflow for LIS data analysis consisted of 
several key steps: 

1. Brightest Frame Indexing: The image series was 
scanned to identify the frame with the highest 
overall fluorescence intensity, which marked the 
initiation of the shockwave effect (Figure 6). 

2. Automated ROI (Region of Interest) 
Segmentation: Cells were automatically 
segmented from the frame containing the peak 
fluorescence signal. Algorithms adapted from DNA 
repair studies were employed to delineate each 
cell as an individual ROI, allowing targeted 
intensity tracking (Figure 7) 

3. Temporal Tracking of Cellular Response: 
Fluorescence intensity for each segmented ROI 
was measured and recorded across all frames, 
capturing the temporal evolution of calcium 
responses at the single-cell level. 

4. Batch Processing of Multiple ROIs: All ROIs and 
frames were processed in batch mode, enabling 
time-resolved fluorescence traces to be compiled 
automatically for large populations of cells with 
minimal manual input. 

5. Quantitative Data Output and Visualization: 
The intensity trajectories for each cell were 
exported into structured CSV datasets for 
downstream statistical analysis. Visualization 
tools such as Matplotlib were used to generate 
comprehensive response curves, facilitating 
interpretation of calcium dynamics following LIS 
(Figure 8). 
This automated pipeline markedly accelerated the 

analysis process, reducing what had previously required 
hours of manual tracing per dataset to only a few 
minutes of computation. At the same time, accuracy and 
reproducibility were maintained, thereby enabling 
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efficient and scalable analysis of calcium dynamics in 
neuronal and RGC models subjected to traumatic injury. 

 
Figure 6. Cortical neuron calcium responses (Fluo-4) following 

LIS. A transient fluorescence increase indicated rapid Ca²⁺ influx 

immediately post-LIS. 

 

 
Figure 7. Calcium fluorescence frame used for automated ROI 

segmentation. Per-cell ROIs allowed single-cell response 

tracking across the time series. 

 

 
Figure 8. Automated ROI Cell Detection of Cortical Cells in 

Figure 7. Cell-level segmentation can automatically capture the 

calcium spikes before and after LIS. 

 

3.3 Automated Image Processing of RGC Calcium 
Responses After Laser ablation and LIS  

To further evaluate the effectiveness and 
robustness of the proposed algorithms in broader 
biological applications, calcium imaging datasets of 
retinal ganglion cells (RGCs) before and after laser 
ablation and LIS exposure were processed and analyzed. 
As shown in Figure 9, RGCs were successfully segmented 
and masked automatically using the same algorithmic 
framework previously applied to cortical cells. 

Representative calcium intensity traces from three 
randomly selected RGCs were used to demonstrate the 
system’s performance under different experimental 
conditions (Figures 10–12): 

1. Control Condition (No Laser Ablation or LIS): 
Calcium intensity remained relatively stable over 
a 10-minute observation period (Figure 10). This 
condition served as the baseline to validate the 
algorithm’s accuracy in detecting true fluctuations. 

2. Laser Ablation: A pronounced calcium spike (~40% 
increase) was detected immediately after laser 
ablation, followed by a gradual return to baseline 
levels within approximately 10 minutes (Figure 
11). 

3. Laser-Induced Shockwave (LIS): Calcium 
intensity increased more than two-fold following 
LIS exposure and then exhibited a continuous 
decline over the subsequent 25 minutes (Figure 
12). 
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The Python codes used for cortical neuron analysis 
were applied directly, with only minor modifications 
introduced to convert the x-axis from frames to time in 
minutes. This demonstrated that the pipeline could be 
readily adapted for use across different cell types with 
minimal adjustments. Importantly, these results 
confirmed the generalizability of the machine learning–
based workflow across diverse biological models. 

 
Figure 9. Automatic segmentation of retinal ganglion cells 

(RGCs). The same pipeline generalized to a distinct neuronal cell 

type with minimal code changes. 

 

 
Figure 10. RGC calcium traces under control (no damage). Stable 

baselines validated specificity—no spurious spikes without 

perturbation. 

 
Figure 11. RGC calcium traces after laser ablation. A prompt 

~40% ΔF/F₀ spike followed by recovery indicated acute, 

localized activation. 

 

 
Figure 12. RGC calcium traces after LIS. A larger, longer-lasting 

elevation (>2× baseline) reflected stronger mechanical loading 

from LIS. 

 
3.4. Calcium Flux Analysis in Mouse Primary Cortical 
Neurons 

To extend the applicability of the automated 
pipeline, calcium flux in mouse primary cortical neurons 
was analyzed under both normal and Alzheimer’s 
disease (AD) conditions. The inclusion of multiple 
fluorescence channels enabled simultaneous monitoring 
of calcium dynamics and cell survival status following 
LIS exposure. 

Multi-channel fluorescence images were acquired, 
including Fluo-4 for calcium signals, Ethidium Dimer III 
(Dead Red) for non-viable cells, and phase contrast 
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views for structural reference. These datasets were 
processed through the automated workflow, which was 
adapted with only minor modifications to accommodate 
multiple input channels. 

The workflow proceeded as follows: 
1. Input Image Selection: Image sets containing 

calcium, viability, and phase contrast channels 
were provided for each experiment. 

2. Dead Cell Detection: A watershed segmentation 
algorithm was applied to the Dead Red channel to 
identify and exclude non-viable cells from 
subsequent calcium flux analysis. 

3. Live Cell Segmentation: Cellpose was used to 
automatically delineate individual live neurons, 
producing accurate masks across all frames in the 
time-lapse sequences. 

4. Shockwave Frame Detection and Validation: 
The peak LIS-induced calcium response was 
automatically identified from the image series, and 
fluorescence signals were validated for quality 
before analysis. 

5. Quantitative Calcium Analysis: For each valid 
live neuron, ΔF/F₀ values were calculated to 
normalize calcium intensity changes. Calcium 
peaks were detected, and decay kinetics were 
modeled using a two-phase exponential fit to 
estimate transient half-lives. 

6. Data Export and Visualization: Time-course 
plots were generated (Figure X), showing the 
onset of LIS-induced responses, calcium peak 
detection, and subsequent recovery or decline. 
Results were exported into CSV format for 
statistical evaluation. 
 

 
Figure 13. Live/dead classification (in Dead Red channel) with 

red channel readouts. Excluding Dead Red-positive cells 

prevented bias from non-viable ROIs in ΔF/F₀ analysis 

 
Figure 14 Cellpose masked combined with Dead Red to define 

the live-cell set. Multi-channel logic yielded reproducible 

segmentation. 

 
The automated workflow successfully processed 

multi-channel datasets to segment live and dead neurons 
and quantify their calcium responses after LIS 
stimulation. As shown in Figure 13, Cellpose 
segmentation combined with the Dead Red channel 
enabled accurate differentiation between viable and 
non-viable cells, eliminating the need for manual cell-by-
cell annotation. 

Representative calcium intensity traces for both 
dead and live neurons were displayed in Figure 14 The 
pipeline automatically detected fluorescence changes, 
normalized the signals, and generated time-course plots 
that tracked calcium responses without requiring 
manual tracing or frame-by-frame measurement. 

These observations demonstrated that the 
automated image processing pipeline effectively 
replaced manual methods by providing reproducible 
segmentation, accurate response quantification, and 
rapid visualization. The ability to analyze multiple 
fluorescence channels simultaneously further 
highlighted the adaptability of the workflow to complex 
experimental datasets. 
 
Figures must be clear and high quality, preferably in EPS 
format. Figure axes must be labelled. Any text in the 
figures must be readable.  
 
 



   

 

 26 

4. Conclusions 
An automated image processing framework based 

on machine learning was implemented and validated 
across several biological applications, including protein 
recruitment after DNA damage, calcium responses in 
cortical neurons exposed to laser-induced shockwaves 
(LIS), retinal ganglion cell (RGC) injury models, and 
multi-channel calcium imaging in Alzheimer’s disease 
(AD) neuronal models. 

The pipeline integrated cell segmentation, signal 
detection, quantitative measurement, and data 
visualization into a unified workflow. In all applications, 
manual image processing was effectively replaced, 
reducing analysis time from hours to minutes, 
eliminating observer bias, and improving 
reproducibility. 

Accurate detection of DNA repair kinetics, 
automated quantification of calcium flux in neurons and 
RGCs, and differentiation of live and dead cells in multi-
channel datasets demonstrated the adaptability of the 
workflow. Its performance across different cell types and 
experimental conditions highlighted both robustness 
and scalability. 

This framework provided an efficient and 
generalizable solution for large-scale time-lapse 
fluorescence imaging studies and offered substantial 
improvement over traditional manual methods. In 
practical terms, this made the approach easy to adopt in 
small or mid-sized labs without dedicated informatics 
support. Everything can run on ordinary hardware, with 
clear steps, parameters, and checks for reproducibility. 
The result provided is faster, more consistent analysis 
that frees time for experiments and interpretation. 
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