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Abstract - Machine learning (ML) has been successfully applied
across numerous disciplines to enhance efficiency and accuracy;
however, most biological research laboratories continued to rely
heavily on manual image processing approaches. While expert
analysis was essential during the early experimental stages, the
availability of sufficient datasets allowed ML algorithms to
significantly accelerate image analysis and reduce human error.
This motivation led to the development of a machine learning-
based image processing pipeline for biological imaging
applications. An ML framework integrating Cellpose-based
segmentation with Python automation was implemented and
applied to four major areas: protein recruitment following DNA
double-strand breaks (DSBs), calcium flux tracking in cortical
neurons after laser-induced shockwave (LIS) injury, calcium
response characterization in retinal ganglion cells (RGCs), and
comparative calcium dynamics in Alzheimer’s disease (AD)
cellular models. Controlled DSBs were introduced into U20S
cells by a robotic laser microscope system (Robolase), with
proteins of interest labeled using green fluorescent protein
(GFP). Sequential fluorescence images were acquired and
processed through custom Python code. The algorithm
automatically detected protein recruitment by quantifying GFP
intensity changes over time and generated kinetic plots within
minutes. Minimal code modifications allowed the pipeline to be
extended to calcium flux analyses in neurons, RGCs, and AD-
affected cells. The automated pipelines considerably shortened
the image processing time compared with manual methods,
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while maintaining high precision and scalability across
biological applications. These findings demonstrated the
potential of ML-enhanced imaging pipelines to advance studies
of DNA damage repair, traumatic brain injury (TBI) modeling,
and neurodegenerative disease.
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1. Introduction

The elucidation of the DNA double helix structure
by Watson and Crick marked a turning point in the
understanding of genetic material and emphasized its
vulnerability to damage. Foundational studies by
Meselson and Stahl established the principles of DNA
replication and repair [1]. In the 1970s, Berns and
colleagues introduced laser ablation as a highly precise
method to induce cellular-level damage [2], enabling
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controlled studies of biological injury [3]. Subsequent
advancements in laser technology and live-cell imaging
techniques allowed real-time monitoring of DNA repair
processes, providing deeper insights into molecular
mechanisms following double-strand breaks (DSBs) [4-
11].

Despite these technological advances, the analysis
of large-scale time-lapse fluorescence imaging data
remained labor-intensive, error-prone, and highly
variable when performed manually. This limitation
created a critical demand for automated, efficient, and
reproducible methods. The integration of machine
learning (ML) algorithms offered a promising solution by
combining speed, accuracy, and scalability. In this study,
an ML-driven image analysis framework was
implemented to substantially accelerate data processing
while maintaining reproducibility and precision.

In parallel, laser-induced shockwaves (LIS) were
increasingly employed as a model for traumatic brain
injury (TBI), a condition of high relevance in both
military and sports medicine. Investigations into blast-
related TBI dated back to the 1950s [12], evolving into
extensive molecular and cellular studies over
subsequent decades [13-14]. Initially developed for
clinical applications such as gallstone lithotripsy [15],
shockwave technology was later adapted to examine
neural tissue injury, highlighting the importance of Ca**
signaling mediated by cavitation microbubbles [16]. A
specialized LIS system was developed in the
Biophotonics Laboratory at UC San Diego to simulate
blast-induced conditions at the cellular level, enabling
detailed studies of neuronal and astrocytic calcium
responses [17].

Traditional manual quantification of calcium
fluctuations was inefficient and inconsistent. To
overcome these limitations, the ML framework originally
designed for DNA repair analysis was adapted to LIS
experiments, integrating Python-based automation with
advanced segmentation methods to enable rapid and
precise quantification of calcium dynamics in cortical
neurons and retinal ganglion cells (RGCs).

Importantly, the same framework was further
extended to neurodegenerative disease models where
multiple fluorescence channels were required. In these
cases, the pipeline was applied not only to monitor
calcium flux before and after laser damage but also to
relate the observed responses to cell survival status. In
particular, calcium dynamics in mouse primary cortical
neurons with and without Alzheimer’s disease were
analyzed following LIS. Because cortical neurons are
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especially vulnerable to dysfunction in Alzheimer’s
disease, this application provided key insights into early
functional deficits associated with disease progression.
While neuronal calcium transients were traditionally
analyzed wusing MATLAB-based methods—often
unstable, error-prone, and requiring extensive manual
masking—the automated Python workflow enabled
efficient, reliable, and reproducible analysis across
multi-channel datasets.

Beyond the technical details, the workflow was
built for typical biomedical labs. It can run on a
standard desktop, use open-source Python tools, and
turn what hours of manual tracing were into minutes of
automated analysis. The same code can be pointed at
common image formats and adapted with small edits
for related assays.

2. Materials and System Setups
2. 1. Laser Ablation System Setup

A tunable femtosecond mode-locked Ti:Sapphire
infrared laser (Mai Tai, Spectra-Physics, Newport Corp.,
Mountain View, CA) was used to generate the laser-
induced microirradiation for precise subcellular
targeting. Laser power was attenuated via a motorized
rotating optical polarizer (Newport, Irvine, CA), and
pulse delivery was controlled by a mechanical shutter
(Vincent Associates, Rochester, NY) with a 10 ms duty
cycle. The laser beam was expanded to fill the back
aperture of a 100x NA 1.3 Zeiss objective mounted on a
Zeiss Axiovert 200M microscope and focused on the
sample. Two-photon excitation was employed at either
730 nm (effective 365 nm) or 800 nm (effective 400 nm)
with laser powers of 50 mW and 60 mW, respectively,
measured before entering the phase contrast objective.
A custom-built Labview APP was programmed to
facilitate high-resolution, real-time, live-cell imaging.

2.2 U20S Cell Lines for DNA Repair Study

The preparation of U20S (human osteosarcoma)
cell lines was described previously in [18]. U20S cells
were obtained from the American Type Culture
Collection (ATCC) cell repository. RPE-1 WT cells were
received from Dr. Stephen P. Jackson’s lab. UWB1 and
UWB1 reconstituted with BRCA1 cells were received
from Dr. Lee Zou’s lab. Cells were cultured in Dulbecco’s
modified Eagle’s medium (DMEM; Gibco) supplemented
with 10% fetal bovine serum (FBS; GeminiBio.), 2ZmM L-
glutamine (Sigma-Aldrich), and 1% penicillin-
streptomycin containing glutamine (Gibco) at 37 °C in a



humid atmosphere containing 5% CO2. The U20S (EGFP-
HR/STGC) reporter cell line was generated by the
transfection of the EGFP-HR/STGC reporter into U20S
cells with polyethylenimine (PEI) using the standard
protocol, followed by hygromycin B (100 pg/ml)
selection. Double-strand breaks (DSBs) were introduced
in live-cell nuclei through precision laser-induced
microirradiation.

2. 3. Laser-Induced Shockwave System Setup

A Coherent Flare 532 nm laser system (100 Hz
repetition rate, 2 ns pulse width, 450 pJ pulse energy;
Spectra-Physics, Mountain View, CA) was used to
generate localized shockwaves. Laser power was
attenuated via a motorized rotating optical polarizer
(Newport, Irvine, CA), and pulse delivery was controlled
by a mechanical shutter (Vincent Associates, Rochester,
NY) with a 10-15 ms duty cycle. The laser beam was
expanded to fill the back aperture of a 40x NA 1.3 Zeiss
objective mounted on a Zeiss 200M microscope and
focused 10 pm above the substrate. The incident power
measured before the objective was approximately 200-
220 uW. A Zeiss filter set 48 (436/20 nm excitation, 455
nm long-pass dichroic mirror) was installed, with
additional emission filters (535/30 nm for FRET, 480/40
nm for ECFP) mounted on a LUDL motorized filter wheel,
positioned before an ORCA-Flash4.0 V2 Hamamatsu
CMOS camera for fluorescence imaging.

2.4 Preparation for Cortical Neurons and RGC

Mouse primary cortical neurons were cultured as
described in (Gu et al, DOI: 10.1016/j.nbd.2024.
106502). Cells were preloaded with Fluo-4 AM [17] to
study calcium flux. LIS creates a cavitation bubble that
expands and rapidly collapses, causing subsequent death
to cells in the bubble's vicinity. A 1032 nm laser was
focused 10 um above the substrate, which contained the
neurons.

RGCs from postnatal (5 days) Sprague-Dawley rats
were purified by immunopanning, separated, and
cultured in a serum-free defined growth medium
containing BDNF, CNTF, insulin, and forskolin. RGCs
were dyed with Fluo-4, a calcium indicator. Fluorescence
images were taken every 10 seconds for 5-25 minutes.
The axon of an individual cell was then damaged by a 275
uW laser 20 pm away from the cell soma.

3. Results and Discussions
3.1 Machine Learning-Driven Image Analysis for
DNA Repair Dynamics Post-Laser Ablation
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One of the major bottlenecks traditionally
encountered in live-cell DNA repair imaging was the
labor-intensive task of manually analyzing hundreds to
thousands of time-lapse fluorescence images to capture
subtle recruitment events of repair proteins following
laser ablation. To address this limitation and expedite
the data analysis process, a robust machine learning
pipeline was designed and adapted, building on the
capabilities of Cellpose [19], a state-of-the-art deep
learning segmentation framework in computational
biology.

A significant advancement was achieved by
integrating automated cell detection, repair line
identification, and intensity quantification into a single
streamlined system. Multiple available methods from
online repositories, published literature, and GitHub
resources were extensively evaluated, and Cellpose was
identified as the most versatile. The pre-trained
convolutional neural networks (CNNs) in Cellpose were
customized to specifically address the challenges
associated with dynamic protein recruitment analysis
following DNA damage.

The workflow proceeded as follows:

Batch Image Loading: Sequential fluorescence
images capturing the recruitment of repair
proteins were loaded for processing. These time-
lapse datasets represented the dynamic behavior
of protein of interest at the sites of laser-induced
DNA double-strand breaks as shown in Figure 1
Automated Cell Segmentation: Each image
underwent automated segmentation through
Cellpose, which generated accurate cell masks and
delineated nuclear boundaries with minimal
manual intervention as shown in Figure 2.
Cropped Region Extraction: Using the
segmentation masks, individual cells were
cropped and saved for high-precision analysis of
protein recruitment.

Recruitment Line Detection: The brightest pixel
within each cropped cell was automatically
identified as the initial recruitment signal at the
laser cut site as shown in Figure 3

Thresholding and Binary Mask Creation:
Cropped images were normalized, thresholded,
and converted into binary masks using OpenCV
libraries, thereby improving signal-to-noise ratios
and enhancing recruitment site visibility.
Contour Detection and Line Segmentation:
Contours were detected, and the laser-induced cut
line was delineated by connecting the two farthest
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points on the contour. This enabled precise spatial

mapping of the recruitment process as shown in

Figure 4.

7. Quantitative Intensity Measurement: The mean
fluorescence intensity along the laser cut line was
calculated over time, providing a direct
quantitative assessment of protein recruitment
dynamics as shown in Figure 5.

8. Data Export and Visualization: All quantified
results were exported into structured CSV files,
and fluorescence intensity plots were generated
using Python-based visualization tools such as
Matplotlib.

This machine learning-driven pipeline not only
reduced analysis time from several hours to a matter of
minutes per dataset but also eliminated subjective bias
associated with manual scoring. Furthermore, the
framework demonstrated scalability, as the same code

Figure 2. Automated Cellpose segmentation of Figure 1 frames.
Accurate nuclear/cell masks enable unbiased, per-cell

base could be adapted to additional cell types and quantification without manual tracing
experimental conditions with minimal modification.

Figure 1. Red52 Expressed of U20 Cells after Laser Ablation.
Focal accumulation appeared along the laser path within 4
minutes, marking recruitment onset at DSBs.

Figure 3. Automated detection of the recruitment line. The
algorithm localized the brightest linear feature at the laser
ablation site, standardizing where intensity was sampled over
time.
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Figure 4. Contour Detection and Line Segmentation of the
damage track. Connecting extremal contour points yielded a
consistent ROI for recruitment measurements across frames.

U20S_WT_SO0T0GFP_FOVZ

Figure 5. Quantitative Intensity Measurement of the Red52
recruitment along the ablated line vs. time on one cell in Figure
4. Recruitment kinetics (rise and plateau) were captured within

minutes, replacing manual measurement. (Axes labeled with a.u.
and min.)

3.2 Automated Image Processing of Cortical Cells
Calcium Responses After Laser-Induced Shockwave
Injury

Building upon the expertise developed in
automating DNA repair imaging analysis, the machine
learning-driven methods were extended to two
additional biological applications: the quantitative
analysis of calcium dynamics in cortical neurons and
retinal ganglion cells (RGCs) following laser-induced
shockwave (LIS) injury. This extension represented a
natural progression, as it leveraged the strengths of
automated image segmentation and intensity
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quantification  techniques to address another
biologically complex problem.
LIS systems simulated localized mechanical

injuries at the cellular level, enabling the study of
intracellular calcium fluxes, which served as critical
early indicators of neuronal and astrocytic responses
under traumatic brain injury (TBI) conditions. Manual
analysis of the large volumes of time-lapse imaging data
generated from these experiments was highly
impractical and prone to observer bias. Consequently, an
automated workflow was designed to systematically
extract, quantify, and visualize calcium response
patterns across hundreds of cells over multiple frames.

The workflow for LIS data analysis consisted of
several key steps:

1. Brightest Frame Indexing: The image series was
scanned to identify the frame with the highest
overall fluorescence intensity, which marked the
initiation of the shockwave effect (Figure 6).
Automated ROI (Region of Interest)
Segmentation: Cells were automatically
segmented from the frame containing the peak
fluorescence signal. Algorithms adapted from DNA
repair studies were employed to delineate each
cell as an individual ROI, allowing targeted
intensity tracking (Figure 7)

Temporal Tracking of Cellular Response:
Fluorescence intensity for each segmented ROI
was measured and recorded across all frames,
capturing the temporal evolution of calcium
responses at the single-cell level.

Batch Processing of Multiple ROIs: All ROIs and
frames were processed in batch mode, enabling
time-resolved fluorescence traces to be compiled
automatically for large populations of cells with
minimal manual input.

Quantitative Data Output and Visualization:
The intensity trajectories for each cell were
exported into structured CSV datasets for
downstream statistical analysis. Visualization
tools such as Matplotlib were used to generate

comprehensive response curves, facilitating
interpretation of calcium dynamics following LIS
(Figure 8).

This automated pipeline markedly accelerated the
analysis process, reducing what had previously required
hours of manual tracing per dataset to only a few
minutes of computation. At the same time, accuracy and
reproducibility were maintained, thereby enabling



efficient and scalable analysis of calcium dynamics in
neuronal and RGC models subjected to traumatic injury.
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Figure 6. Cortical neuron calcium responses (Fluo-4) following

LIS. A transient fluorescence increase indicated rapid Ca?" influx
immediately post-LIS.

Figure 7. Calcium fluorescence frame used for automated ROI
segmentation. Per-cell ROIs allowed single-cell response
tracking across the time series.

Figure 8. Automated ROI Cell Detection of Cortical Cells in
Figure 7. Cell-level segmentation can automatically capture the
calcium spikes before and after LIS.

3.3 Automated Image Processing of RGC Calcium
Responses After Laser ablation and LIS
To further evaluate the effectiveness and
robustness of the proposed algorithms in broader
biological applications, calcium imaging datasets of
retinal ganglion cells (RGCs) before and after laser
ablation and LIS exposure were processed and analyzed.
As shown in Figure 9, RGCs were successfully segmented
and masked automatically using the same algorithmic
framework previously applied to cortical cells.
Representative calcium intensity traces from three
randomly selected RGCs were used to demonstrate the
system’s performance under different experimental
conditions (Figures 10-12):
1. Control Condition (No Laser Ablation or LIS):
Calcium intensity remained relatively stable over
a 10-minute observation period (Figure 10). This
condition served as the baseline to validate the
algorithm’s accuracy in detecting true fluctuations.
2. Laser Ablation: A pronounced calcium spike (~40%
increase) was detected immediately after laser
ablation, followed by a gradual return to baseline
levels within approximately 10 minutes (Figure
11).
3. Laser-Induced Shockwave (LIS): Calcium
intensity increased more than two-fold following
LIS exposure and then exhibited a continuous
decline over the subsequent 25 minutes (Figure
12).



The Python codes used for cortical neuron analysis
were applied directly, with only minor modifications
introduced to convert the x-axis from frames to time in
minutes. This demonstrated that the pipeline could be
readily adapted for use across different cell types with
minimal adjustments. Importantly, these results
confirmed the generalizability of the machine learning-
based workflow across diverse biological models.

“img_000000002_Fluo4_000.if
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Figure 9. Automatic segmentation of retinal ganglion cells
(RGCs). The same pipeline generalized to a distinct neuronal cell
type with minimal code changes.
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Figure 10. RGC calcium traces under control (no damage). Stable
baselines validated specificity—no spurious spikes without
perturbation.
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Figure 11. RGC calcium traces after laser ablation. A prompt
~40% AF/Fo spike followed by recovery indicated acute,
localized activation.
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Figure 12. RGC calcium traces after LIS. A larger, longer-lasting
elevation (>2x baseline) reflected stronger mechanical loading
from LIS.

3.4. Calcium Flux Analysis in Mouse Primary Cortical
Neurons

To extend the applicability of the automated
pipeline, calcium flux in mouse primary cortical neurons
was analyzed under both normal and Alzheimer’s
disease (AD) conditions. The inclusion of multiple
fluorescence channels enabled simultaneous monitoring
of calcium dynamics and cell survival status following
LIS exposure.

Multi-channel fluorescence images were acquired,
including Fluo-4 for calcium signals, Ethidium Dimer III
(Dead Red) for non-viable cells, and phase contrast



views for structural reference. These datasets were
processed through the automated workflow, which was
adapted with only minor modifications to accommodate
multiple input channels.

The workflow proceeded as follows:

Input Image Selection: Image sets containing
calcium, viability, and phase contrast channels
were provided for each experiment.

Dead Cell Detection: A watershed segmentation
algorithm was applied to the Dead Red channel to
identify and exclude non-viable cells from
subsequent calcium flux analysis.

Live Cell Segmentation: Cellpose was used to
automatically delineate individual live neurons,
producing accurate masks across all frames in the
time-lapse sequences.

Shockwave Frame Detection and Validation:
The peak LIS-induced calcium response was
automatically identified from the image series, and
fluorescence signals were validated for quality
before analysis.

Quantitative Calcium Analysis: For each valid
live neuron, AF/F, values were calculated to
normalize calcium intensity changes. Calcium
peaks were detected, and decay kinetics were
modeled using a two-phase exponential fit to
estimate transient half-lives.

Data Export and Visualization: Time-course
plots were generated (Figure X), showing the
onset of LIS-induced responses, calcium peak
detection, and subsequent recovery or decline.
Results were exported into CSV format for
statistical evaluation.

1.

‘\-_.___‘\_h___-__._

Figure 13. Live/dead classification (in Dead Red channel) with
red channel readouts. Excluding Dead Red-positive cells
prevented bias from non-viable ROIs in AF/Fo analysis
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Figure 14 Cellpose masked combined with Dead Red to define
the live-cell set. Multi-channel logic yielded reproducible
segmentation.

The automated workflow successfully processed
multi-channel datasets to segmentlive and dead neurons
and quantify their calcium responses after LIS
stimulation. As shown in Figure 13, Cellpose
segmentation combined with the Dead Red channel
enabled accurate differentiation between viable and
non-viable cells, eliminating the need for manual cell-by-
cell annotation.

Representative calcium intensity traces for both
dead and live neurons were displayed in Figure 14 The
pipeline automatically detected fluorescence changes,
normalized the signals, and generated time-course plots
that tracked calcium responses without requiring
manual tracing or frame-by-frame measurement.

These observations demonstrated that the
automated image processing pipeline effectively
replaced manual methods by providing reproducible
segmentation, accurate response quantification, and
rapid visualization. The ability to analyze multiple
fluorescence  channels  simultaneously  further
highlighted the adaptability of the workflow to complex
experimental datasets.

Figures must be clear and high quality, preferably in EPS
format. Figure axes must be labelled. Any text in the
figures must be readable.



4. Conclusions

An automated image processing framework based
on machine learning was implemented and validated
across several biological applications, including protein
recruitment after DNA damage, calcium responses in
cortical neurons exposed to laser-induced shockwaves
(LIS), retinal ganglion cell (RGC) injury models, and
multi-channel calcium imaging in Alzheimer’s disease
(AD) neuronal models.

The pipeline integrated cell segmentation, signal
detection, quantitative measurement, and data
visualization into a unified workflow. In all applications,
manual image processing was effectively replaced,
reducing analysis time from hours to minutes,
eliminating observer  bias, and improving
reproducibility.

Accurate detection of DNA repair Kinetics,
automated quantification of calcium flux in neurons and
RGCs, and differentiation of live and dead cells in multi-
channel datasets demonstrated the adaptability of the
workflow. Its performance across different cell types and
experimental conditions highlighted both robustness
and scalability.

This framework provided an efficient and
generalizable solution for large-scale time-lapse
fluorescence imaging studies and offered substantial
improvement over traditional manual methods. In
practical terms, this made the approach easy to adopt in
small or mid-sized labs without dedicated informatics
support. Everything can run on ordinary hardware, with
clear steps, parameters, and checks for reproducibility.
The result provided is faster, more consistent analysis
that frees time for experiments and interpretation.
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