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Abstract - In light of the increasing incidence of upper-limb 
motor disorders, especially following strokes, there is a growing 
focus on developing assistive technologies to improve patient 
independence. This study investigated the effect of using a 
supernumerary robotic finger (SRF) on cortical functional 
connectivity during daily activities. SRFs have shown potential 
in overcoming grasping difficulties by employing adaptive 
strategies for manipulating various objects. To evaluate the 
neural responses to SRFs, neuroimaging methods such as fMRI 
and EEG were utilized. This research introduced a novel method 
by analyzing cortical functional connectivity through EEG sub-
band analysis of the beta-band using Phase Locking Value (PLV) 
during simple daily tasks. The findings reveal task-specific 
changes in cognitive processing associated with SRF use. These 
results highlight the complex interaction between external 
assistive devices and shifts in cortical functional connectivity, 
offering important insights for developing more effective 
assistive technologies. 
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1. Introduction 
Upper limb movement and hand/finger directed 

movement are of paramount importance in their 
interaction with the environment, as they facilitate the 
manipulation of diversely sized and shaped objects, as 
part of the response to our immediate personal space 
consisting of cognitive and emotive adaptation. Recently, 
there has been a notable increase in post-stroke cases, 
attributed to the rise in aging population. More than 80% 
of individuals with hemiplegia following a stroke 
experience varying degrees of upper-limb sensorimotor 
dysfunction due to damage to the central nervous system 
[1]. These motor disorders, particularly those affecting 
the upper limb, significantly impact ability to perform 
activities of daily living (ADLs). Consequently, 
researchers are actively working on developing 
technologies to enhance patient self-sufficiency and 
promote independent living [2]. 

Numerous assistive robotic devices are currently 
addressing the challenge of limited hand grasping 
capabilities. One option involves utilizing a 
supernumerary robotic finger (SRF). The designs and 
applications of SRFs vary, with assistive SRFs designed 
for individuals with grasping difficulties often enabling 
an adaptive cylindrical grip. This is achieved through the 
incorporation of soft links/joints or other adaptive 
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grasping mechanisms [3],[4], which are effective for 
grasping objects of varied sizes, except for very small 
items that demand a precise grip. 

Neuroimaging methods such as functional 
magnetic resonance imaging (fMRI) and 
electroencephalography (EEG) enable the measurement 
of neural activity linked to the use of SRFs. These 
techniques unveil cognitive and emotive adaptations, 
showcasing activation, plasticity, and sensory 
integration patterns. Hussain et al. [5] noted higher 
neural activity when participants used an MRI-
compatible extra robotic finger after training compared 
to before training. This increased activity was observed 
in various brain regions such as the cingulate cortex, 
superior and inferior parietal lobules, and middle frontal 
gyrus on both sides of the brain. Similarly, Mehring et al. 
[6] used fMRI to identify a unique cortical representation 
in polydactyl patients, revealing the brain's capacity to 
adapt to an extra limb, and enhancing manipulative 
skills. EEG, though limited to exploring cortical activity, 
can convey human intentions and adaptation for 
external device control. Liu et al. [7], using EEG and fMRI 
analyses, explored cerebral activity changes after a four-
week SRF training, revealing significant alterations in 
cerebellar regions correlated with motor function 
improvements. 

On the other hand, brain functional connectivity 
was investigated in a number of studies to quantify 
cognitive load. Zeng et al. [8] developed a system for 
visualizing cognitive activity with EEG, exhibiting brain 
connectivity across EEG channels and regions using 
Pearson correlation coefficient and coherence. Similarly, 
the effectiveness of integrating deep learning with EEG-
based functional connectivity metrics in the 
classification of mental workload was emphasized by 
Gupta et al. [9]. Mazher et al. [10] found that coherence 
combined with graph theory-based network analysis 
outperformed traditional methods in assessing cognitive 
load using EEG data. Nevertheless, there is a gap in the 
literature concerning the analysis of cognitive load and 
mental states through EEG functional connectivity 
analysis when utilizing additional robotic limbs for 
everyday tasks. 

Hence, this study presents a methodological 
approach for evaluating  adaptation to the integration of 
an additional robotic finger from EEG patterns recorded 
from the EEG sensors. It employs beta sub-band EEG to 
examine brain functional connectivity, utilizing Phase 
Locking Value (PLV) for quantification. Through this 
technique, changes in cerebral connectivity induced by 

the performance of routine ADL tasks using the 
supernumerary robotic finger can be identified and 
analyzed. While PLV has been utilized previously for 
brain functional connectivity analysis, our study 
uniquely applies it in the context of assessing adaptation 
to robotic augmentation in ADL tasks. To refine the 
connectivity networks, we employed a data-driven 
thresholding approach based on Global Cost Efficiency 
(GCE), enhancing the precision of our findings regarding 
cerebral adaptation to the SRFs. As a result, the current 
findings will not only establish a fundamental basis for 
advancing knowledge regarding the effects of SRF usage 
on mental states and cognitive function of the user, but 
also facilitate advancements in the design and 
functionality of the SRF. 

 

2. Methodology 
2. 1. Participants 

The study included ten Khalifa University 
students, five females and five males. The experimental 
procedure and study methodology were approved by 
Khalifa University's Institutional Review Board (Ref. 
H21-027). All of the subjects were healthy, right-handed, 
and had normal vision, hearing, and color perception, as 
well as no history of neurological dysfunction, substance 
use disorder or long-term prescription usage. They sat 
comfortably in a cool, airy room, where they received a 
detailed presentation about the experiment. Subjects 
completed informed consent forms prior to 
participation. 

 
2. 2. Experiment Setup 

The design of the SRF was based on a previous 
work [11], employing 3D printed rigid links (resembling 
finger phalanges) and soft links (mimicking joints). The 
rigid links are constructed from Polyactic Acid (PLA), 
while the soft links are made of Thermoplastic 
Polyurethane (TPU). The flexion-extension movement is 
achieved through a tendon-driven actuation system. A 
DC motor (Dynamixel MX-64) pulls the tendon for finger 
flexion, while antagonistic elastic rubber bands facilitate 
finger extension. The SRF was worn on the wrist of the 
dominant hand. A user-friendly push-button control 
system was implemented, allowing users to trigger 
flexion or extension with two buttons integrated into a 
wearable ring on the non-dominant hand. 

EEG data were recorded using the Nexus-32 
system (Mind Media, Herten, Germany). The cap was 
outfitted with 19 Silver/Silver Chloride wet electrodes 
arranged in accordance with the 10-20 international 
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standard (Figure 1). Notably, the Nexus-32 does not use 
an electrode as a reference; instead, it employs a 
hardware common average reference. Data were 
collected at a sampling rate of 256 samples per second. 

 
2. 3. Data Acquisition 

The experimental design incorporated three 
distinct ADLs for the participants to complete: pouring 
water, sorting shapes, and a driving task on a driving 
simulator. Each subject underwent two recording 
sessions (phases). In the first phase, they performed the 
tasks using their dominant hand. In the second phase, the 
same tasks were repeated, but this time with an SRF 
affixed to their wrist. The order of these tasks was 
randomized among subjects.  

For the "Pouring water" task, subjects were 
instructed to hold a 200-ml plastic bottle of water in 
their dominant hand (or SRF), pour the water into a 
glass, hold it, and drink from the glass. In the "Driving" 
task, participants drove for two minutes using a driving 
simulator. The steering wheel and paddles were linked 
to a Sony PlayStation 4 running a bus simulator game 
(created by Icebytes, Contendo Media, TML Studios, and 
Stillalive Studios). In the "Shapes sorting" task, subjects 

were asked to pick one object at a time with their 
dominant hand (or SRF) and insert it into the matching 
opening in the box. The experimental layout, comprising 
the three tasks and the two phases, is depicted in Figure 
2. 

 
Figure 1. EEG 19 electrodes are positioned according 

to the 10-20 international system. 

 

 
Figure 2. Experiment design and setup including the two phases (with SRF and without SRF) and the three tasks 

(pouring water, driving, and shapes sorting). 
 

2. 4. EEG Preprocessing and Analysis 
The raw EEG data were pre-processed using 

MATLAB R2022b and the EEGLAB v2021.0 toolbox to 
ensure data quality [12]. Band-pass filtering was applied 
with a passband of 0.5 Hz to 40 Hz. Subsequently, the 
signals were re-referenced to the common average 
reference. The Independent Component Analysis (ICA) 
method in EEGLAB was used to manually eliminate 

artifacts caused by eye blinks and movements. Following 
this, baseline subtraction was applied to the cleaned EEG 
data, and the signals were divided into target-related 
EEG epochs. Finally, the clean EEG data were divided 
into delta (0.5–4Hz), theta (4–8Hz), alpha (8–12Hz), beta 
(12–30Hz), and gamma (30–40Hz) frequency bands. 

Functional connectivity was estimated by applying 
the Hilbert Transform to the bandpass-filtered epochs, 
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utilizing the PLV [13]. As a result of its lack of reliance on 
presumptions regarding the data, the PLV is particularly 
suitable for the examination of non-stationary and non-
linear signals [14]. Additionally, PLV permits the 
evaluation of phase coupling without the impact of zero-
lag interference and is less sensitive to noise. In a time 
window, the PLV between channels 𝑢 and 𝑣 (𝑃𝐿𝑉𝑢𝑣) is 
calculated as follows: 

 

𝑃𝐿𝑉𝑢𝑣 =
1

𝑛
× |∑𝑒𝑗[𝜙𝑢(𝑡𝑘)−𝜙𝑣(𝑡𝑘)]

𝑛

𝑘=1

| (1) 

where, 𝜙𝑢 and 𝜙𝑣 represent the instantaneous phases of 
the EEG bands associated with channels 𝑢 and 𝑣 at time 
𝑡𝑘, respectively, and 𝑛 denotes the time window length. 
To filter the connectivity networks, a data-driven 
thresholding strategy based on maximizing Global Cost 
Efficiency (GCE) was implemented. A 4D connectivity 
matrix was calculated for each individual and frequency 
band. This matrix included four key elements: phase, 
task, and the two electrodes connections involved. The 
matrix, therefore, shows the relationships between 
different pairs of electrodes. Analysis was limited to the 
EEG beta band due to its association with attention, 
cognitive processing, and mental effort as well as its high 
sensitivity to mental load state and stress [15]. 

Furthermore, since this research aimed to 
investigate how the brain adapts when utilizing SRF for 
daily living tasks, a statistical analysis was conducted 
between the two phases: phase 1 (without SRF) and 
phase 2 (using SRF). The Kolmogorov-Smirnov method 
was utilized to examine the normal distribution of the 
data. The evaluation of connection metrics between the 
phases was performed applying a two-sample t-test, 
employing the Bonferroni–Holm correction method to 
allow for multiple comparisons. Prior to the statistical 
analysis, all the statistical analyses were tested at the 
95% significance level. 

 

3. Results 
In this study, we explored a novel approach to 

assess the brain's adaptation when integrating an 
additional robotic finger. We analyzed brain functional 
connectivity using PLV during daily living activities 
performed with the dominant hand (Phase 1) and 
repeated the analysis during the same activities with the 
added robotic finger (Phase 2). The robotic finger was 
activated by push-button with the contralateral hand. 
The investigation of Phase 1 provides insights into the 
impact of these activities on the EEG beta band  

functional connectivity, whilst the analysis of Phase 2 
offers valuable indications about the influence of 
incorporating the robotic finger into the activities on the 
brain's adaptive processes. 

Figure 3 displays the findings of the EEG beta band 
functional connectivity estimation using the PLV 
measure across both phases and all three tasks. PLV 
connectivity matrices were computed independently for 
each subject during phases 1 (without employing the 
SRF) and 2 (utilizing the SRF) before being averaged for 
all subjects. By employing GCE, weak connections in each 
task matrix were eliminated, retaining only actual 
connections. A decrease in PLV, indicates a weakening of 
the functional connection network, such as between the 
frontal and parietal-occipital lobes of the brain (shown 
as yellow and white nodes). Similarly, an increase in PLV 
indicates a corresponding expansion in the connectivity 
network, which paralleled the observed increase in 
connectivity among the frontal brain regions (red 
nodes). 

Furthermore, the resultant phase 1 minus phase 2 
connectivity network (Δ-GCE-PLV) underwent further 
filtration using a t-test at 𝑝<0.05. The matrix/experiment 
disparity, depicted in Figure 4 (a-c), is constrained 
within a range of -1 to +1. It depicts notable disparities 
in connectivity networks during the performance of the 
"pouring water" (Figure 4a), "driving" (Figure 4b), and 
"shapes sorting" (Figure 4c) tasks between the phases of 
"non-using" and "using" SRF. Channels exhibiting 
positive values (tending towards a red color) indicate a 
reduction in functional connectivity when the SRF was 
utilized. Conversely, negative PLV values (blue color) 
signify heightened functional connectivity within these 
brain regions when the SRF was employed for the 
specified task. 

A notable rise in brain connectivity for EEG 
channels (F8, T4, and T6) when pouring water and using 
the SRF was observed, suggesting increased vigilance 
and reduced stress, as noted by Al-Shargie et al. [16]. In 
contrast, a decline in connectivity was noted between the 
memory function-related channel, T3 and T5 a cognitive 
processing channel Pz, and C3, which indicates 
sensorimotor integration. Combined the decreased 
activity in these channels may indicate heightened 
mental stress. Similar outcomes emerged in the driving 
task, with the T5 channel consistently showing reduced 
connectivity compared to other channels (O1, O2, T6, 
P3). However, for the "sorting shapes" task, the T4 
channel displayed increased connectivity with cognitive 
processing / motor planning (F3), attention (Fp1), and 
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judgment / coordination (Fp2) regions. This could be 
attributed to the nature of the task, involving actions 

such as grasping shapes correctly, deciding on matching 
holes, and orienting shapes for optimal fit.

Without 

SRF 

   

 
With 

SRF 

   
 (a) (b) (c)  

Figure 3. PLV based functional connectivity network for the tasks (a) pouring water, (b) driving, and (c) shapes sorting. 

 

  
(a) (b) 

 
(c) 
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Figure 4. Δ-GCE-PLV connectivity maps for the tasks (a) pouring water, (b) driving, and (c) shapes sorting. Blue color 
indicates increased connectivity (upon using SRF) whereas red color indicates decreased connectivity (upon using SRF). 

4. Discussion 
Cortical phase synchronization and connectivity 

was significantly altered when a robotic finger was 
utilized to perform daily tasks, according to the EEG 
findings. Similarly, the decline in PLV weights observed 
in various brain regions indicates a state of reduced 
information transfer and processing both within and 
between cortical regions, suggesting that the ability to 
perform duties requiring constant vigilance will likely 
decline. This reduction is consistent with findings from 
[14] and [17], which similarly reported impaired 
connectivity in frontal and central regions during 
vigilance decrement and mental stress tasks. Study [14] 
found that vigilance decrement was associated with a 
frequency band-specific reduction in intra-regional 
connectivity, particularly within the frontal and central 
areas, aligning with our observation of reduced 
connectivity under the influence of the robotic finger. 
Moreover, [17] demonstrated that mental stress led to 
diminished information flow, particularly from the left to 
the right prefrontal cortex, mirroring the reduced 
connectivity observed in our study. However, unlike 
[17], which identified the role of binaural beats in 
enhancing connectivity to mitigate stress, our findings 
suggest that the robotic finger’s incorporation may have 
an opposite effect, further reducing connectivity as an 
adaptive mechanism against stress-induced cognitive 
impairment. Even so, study [18] showed that under 
certain mental stress situations, an increase in functional 
connectivity between cortical areas is occasionally 
observed. Hence greater connectivity could work as an 
adaptive mechanism against stress-related impairment 
of cognitive processes that subjects might have 
experienced while using SRF in the current research. 
This highlights the varied interplay between external 
tools, such as a robotic finger, and the brain’s functional 
connectivity, which could vary depending on the type of 
external stimulus or task at hand. 
 

5. Conclusion 
The findings of this study provide valuable insights 

into the cognitive adaptation when utilizing an 
additional robotic finger for daily tasks. The analysis of 
brain functional connectivity using PLV reveals task-
specific alterations during SRF utilization. The observed 
changes in connectivity patterns suggest a delicate 
impact on brain dynamics, with implications for 
cognitive processing and mental stress. Specifically, 

changes in EEG characteristics may indicate changes 
invigilance and reduced stress during the water pouring 
task, while mental stress was highlighted in memory 
function-related channels during this task. Similarly, the 
driving task showed consistent reductions in 
connectivity, indicating potential implications for 
vigilance. The "sorting shapes" task displayed improved 
connectivity in cognitive processing, attention, and 
judgment regions, possibly reflecting the different 
nature of the task, which required more cognitive input 
and decision making. These findings underscore the 
complex interplay between external assistive devices 
and dynamic changes in the brain's functional 
connectivity, shedding light on the broader issue of brain 
adaptation in response to technological interventions. 
Further research is warranted to explore the long-term 
implications and potential applications of these findings 
in developing more effective assistive technologies for 
individuals with upper-limb motor disorders. 
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