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Abstract - Arrhythmias are deviations from the normal heart 
rhythm with impact on the cardiovascular health. Their prompt 
detection plays an important role in mitigating potential 
negative outcomes, particularly in patients in the intensive care 
units (ICU). Heartbeat detection has mainly been focused on 
electrocardiogram (ECG) signals. However, ICU patient mobility 
frequently leads to disconnection of certain ECG leads, 
potentially compromising the accurate heartbeat classification. 
Arterial line blood pressure (ABP) and central venous pressure 
(CVP) signals are routinely monitored in ICU patients. Changes 
in the ABP and CVP suggest alterations in the haemodynamic 
status and cardiac function of the patients. Thus, leveraging 
these signals for heartbeat classification, either independently 
or in conjunction with ECG data, present a viable approach to 
ensure that even in scenarios where ECG signals are unavailable, 
alarm systems alerting healthcare providers of arrhythmias 
remain functional. Moreover, while many researchers have 
successfully created methodologies to accurately classify 
heartbeats including paced beats, none were able to distinguish 
various sub-classes of paced heartbeats. A more comprehensive 
distinction is crucial as it not only aids in the identification of 
pacing settings but also facilitates the detection of inadequate 
pacing settings, a critical aspect in patient care. In this paper, 
we employ a hybrid model using long-short term memory 
networks (LSTM) and convolutional neural network (CNN), 
along with different residual CNN (ResNet) models for 
multimodal arrhythmia classification and for comprehensive 
paced heartbeats classification. When using all three channels, 
ResNet50 achieved the best accuracy of 99.58% on 5 different 
arrhythmia classes, whereas ResNet34 achieved an accuracy of 
93.82% on 12 paced classes. The significant efficiency of 
utilizing ABP and CVP signals independently for classification, 

was also highlighted. ResNet50 was trained with ABP and CVP 
signals independently and correctly identified arrhythmias with 
an accuracy of 98.79% and 96.67%, respectively. For classifying 
12 different paced heartbeats, ResNet34 achieved 74.04% 
accuracy with ABP signals and 74.38% with CVP signals. 
Moreover, the same ResNet50 model was trained on the MIT-
BIH arrhythmia database, achieving an accuracy, sensitivity, 
and precision of 98.78%, 98.77% and 98.80%, which 
demonstrates the scalability of the proposed model. 

Keywords: Arrhythmia, Heartbeat classification, 
Multimodal, Blood pressure, Paced 
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1. Introduction
Cardiovascular diseases (CVDs) are the leading 

cause of death, accounting for up to 30% of the annual 
deaths each year, according to the data from the World 
Health Organisation (WHO). Therefore, it is of utmost 
importance to identify CVDs at the earliest stage in order 
to initiate prompt medical interventions [1]. 
Arrhythmias, which are deviations from the normal 
heart rhythm, are common CVDs indicators that are 
usually divided into two groups: life-threatening and 
non-life-threatening. Examples of life-threatening 
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arrhythmias include asystole and ventricular fibrillation, 
whereas non-life-threatening arrhythmias include atrial 
fibrillation (AF), left bundle branch block (LBBB) and 
premature ventricular contractions (PVC). Arrhythmias 
are frequently detected using electrocardiogram (ECG) 
records which are non-invasive tests that record the 
electrical activity of the heart by placing electrodes on 
the skin of the patients. Distinctive features and 
morphologies exhibited by ECG signal waveforms are 
intricately linked to specific arrhythmias, serving as 
valuable guidelines for clinicians in the identification, 
treatment, and ongoing monitoring of these cardiac 
rhythm abnormalities. 

ECG recordings have been extensively used to 
develop computer-aided diagnosis (CAD) systems 
through the use of signal processing and machine 
learning classification models such as Support Vector 
Machines (SVMs) or deep learning models such as 
Convolutional Neural Networks (CNNs). As a result, over 
the past four decades, the goals of hospital ECG 
monitoring have evolved from basic heart rate tracking 
to the diagnosis of complex arrhythmias. However, 
despite the progress made in technology, the essential 
role of human supervision in analysing ECG monitoring 
data remains crucial, particularly in the intensive care 
units (ICU), where the patients often have complex 
conditions and are given medication which can facilitate 
the development or exacerbation of arrhythmias [2]. In 
addition, most of the patients in the ICU are subjected to 
cardiac resynchronization therapy (CRT), which usually 
involves the implantation of a pacemaker device that 
helps in coordinating the heart's conduction. The correct 
identification of paced beats, including the type of pacing 
and the settings applied to the pacemaker, serve as 
important markers that can help clinicians diagnose 
pacing failures earlier and more efficiently.  For instance, 
the atrioventricular (AV) time delay setting, 
representing the time between pacing the atria and 
pacing the ventricles, is an important pacing parameter 
that is crucial for maximizing CRT efficacy. Moreover, in 
the context of ICU units, patient mobility frequently leads 
to disconnection of certain ECG leads, potentially 
compromising the CAD systems to accurately perform 
arrhythmia detection [3], and detect the critical changes 
that occur with CRT. 

Arterial line blood pressure (ABP) and central 
venous pressure (CVP) signals are routinely monitored 
for ICU patients. The ABP signals are collected using a 
catheter, usually inserted in the radial artery of the wrist, 
which consists of systolic upstroke, dicrotic notch and 

diastolic downslope. The CVP signals are measured with 
a central venous catheter placed in the superior vena 
cava and typically consist of phases such as: a wave, c 
wave, x descent and v wave. Although these signals do 
not directly indicate the activity of the heart, changes in 
the ABP and CVP indirectly suggest alterations in the 
haemodynamic status and cardiac function of the 
patients [4]. For instance, AF causes irregular pulse 
waves in the ABP signals [5] and is associated with the 
absence of the a wave or the fusion of the a and c waves 
on the CVP signal [6]. Thus, leveraging these signals for 
heartbeat classification, either independently or in 
conjunction with ECG data, presents a viable approach to 
ensure that even in scenarios where ECG signals are 
unavailable, alarm systems alerting healthcare providers 
of arrhythmias remain functional. Moreover, while many 
researchers have successfully created methods for 
accurate heartbeat classification including paced beats, 
none were able to distinguish various sub-classes of 
paced heartbeats. A more comprehensive distinction is 
crucial as it not only aids in the identification of pacing 
settings but also facilitates the detection of inadequate 
pacing settings, a critical aspect in patient care. This 
ensures timely intervention and appropriate treatment 
for ICU patients.  

In this work, we developed deep learning models 
that are able to accurately categorize 5 classes (e.g. sinus 
rhythm (SR), atrial fibrillation (AF), atrial tachycardia 
(AT), left bundle branch block (LBBB), and premature 
ventricular contractions (PVC)) of arrhythmia 
heartbeats (Figure 1) and 12 classes (atrial paced and 
ventricular paced (APVP) for atrioventricular (AV) delay 
of 40, 80, 120, 160, 180, 200, 240, 280, and atrial paced 
ventricular sensed (APVS) for atrioventricular delays of 
200, 220, 240, 280, 320) of paced heartbeats utilizing 
single-channel ECG data in combination with ABP and 
CVP signals, as a continuation of our previous work that 
can be found in [7]. Additionally, the study highlighted 
the significant efficacy of utilizing ABP and CVP signals 
independently for heartbeat classification. The 
development of precise prediction models for 
arrhythmias that incorporate both ECG and 
haemodynamic waveforms presents promising 
prospects for advancing computer-aided diagnosis 
(CAD) systems, especially within the dynamic and 
vulnerable environment of the ICU, where patients' 
conditions are frequently unstable and dangerous 
rhythm changes can manifest at any stage. 

The subsequent sections of this paper are 
organized as follows. Section 2 provides an overview of 
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the relevant literature in the field. Section 3 describes the 
dataset used in this paper, the workflow of the 
methodology and the proposed models. Section 4 
presents the results and discussion of the classification, 
including results obtained on the MIT-BIH arrhythmia 
database [8] and a comparison of our method with the 
literature, and finally, Section 6 will conclude this work.  

 

Figure 1. Examples of heartbeats used in this study. 
The first row represents the ECG channel of each heartbeat, 
whereas the second and third rows represent the ABP and 

CVP channels, respectively. 

 

2. Related Work 
Recently, machine learning and deep learning 

techniques have shown great success in detecting 
arrhythmias from ECG signals. Unlike deep learning 
models, machine learning models require additional 
steps of feature extraction and feature selection prior to 
the classification stage. This involves the extraction of 
features such as QRS complex characteristics, RR 
interval-based features, frequency-domain features or 
heart-rate features. Other techniques use wavelet 
transforms (WT) such as continuous wavelet transform 
(CWT) [9] and discrete wavelet transform (DWT) [10], 
[11] as features to the classification model. Although 
these models achieve good results, the process of feature 
extraction can either require expert knowledge or be 
tedious and time consuming. This aspect has motivated 
researchers to explore the development of deep learning 
techniques for this particular application. 

Deep learning models such as CNNs [12]–[15], 
recursive neural networks (RNNs) [16], long short-term 
memory networks (LSTMs) [17], autoencoders [18], and 
hybrid models combining CNN and LSTM architectures 
[19]–[21] have been frequently used in the literature for 
arrhythmia classification. CNNs have emerged as 

promising networks for ECG arrhythmia classification, 
primarily due to their ability to handle multi-
dimensional signals and images effectively. In previous 
studies, CNNs were successfully utilized for this task by 
transforming ECG signals into two-dimensional (2D) 
images [22], spectrograms [23], or 2D time-frequency 
representations. However, recent advancements have 
enabled CNNs to process 1D signals directly, eliminating 
the need for intermediate transformations and achieving 
impressive accuracy in arrhythmia classification.  

In [12], the authors proposed a 9-layer 1D CNN 
model to classify 1 lead ECG heartbeats for 5 different 
classes from MIT-BIH arrhythmia database. They 
calculated the standard deviation and mean of Z-score 
from the ECG signals to generate synthetic data and 
balance the arrhythmia classes, achieving an overall 
accuracy of 94.47%. In [20], a hybrid model combining 
CNNs and LSTMs layers was developed using ECG 
heartbeats from MIT-BIH arrhythmia database, 
achieving a 98.10% overall accuracy for 5 classes. In a 
related study conducted by authors [14], they achieved a 
notable ECG arrhythmia classification accuracy of 
98.30% by developing a 4-layer CNN classifier. The CNN 
architecture incorporated max pooling layer in between 
the convolutions, and three fully connected layers at the 
end of the network. To address the issue of imbalanced 
class distribution in the MIT-BIT dataset, the authors 
employed the synthetic minority oversampling 
technique (SMOTE) to balance the training data. 
Houssein et al. [24] performed feature extraction prior 
to the CNN classification and obtained class balance by 
using SMOTE and random undersampling. The authors 
achieved high-performance results by utilizing a set of 
six distinct types of features extracted from each 
heartbeat, which were subsequently fed into the 1D CNN 
classifier. In [25], the authors used a deep CNN 
architecture with a total of 34 layers to identify 
arrhythmias by utilising single-lead ECG signals from 
ambulatory ECG monitoring devices. The diagnostic 
accuracy of the deep-CNN model exceeded the average 
performance of a cardiologist, this being attributed to the 
ability of the CNN to learn subtle patterns in the data. 
Although the stated works proved to be incredibly 
effective for ECG arrhythmia classification models, deep 
CNN architectures are usually confronting with the 
vanishing gradient problem, which occurs when the 
gradients that are used to update the weights of the 
network become very small and diminishes the ability of 
the network to learn meaningful representations of the 
data. To solve this issue, researchers proposed Residual 
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Neural Networks (ResNet) architectures [26] which use 
skip connections, also known as residual connections, 
that allow the networks to skip certain layers and 
propagate the information from the deeper layers in the 
network with the current one. In this manner, the 
network is able to preserve important features while 
preventing their degradation as they pass through 
multiple layers. ResNet models have been successfully 
applied in ECG arrhythmia classification. Zhang et al. [27] 
proposed a ResNet with 101 layers (ResNet101) 
architecture for single-lead ECG which achieved a 
99.75% accuracy using the MIT-BIH database. The 
authors transformed the segmented ECG heartbeats into 
2D time-frequency diagrams using the Hilbert transform 
(HT) and the Wigner-Ville distribution (WVD). In 
another work, Rahman et al. [28] used a pre-trained 
ResNet50 (transfer learning) model to classify ECG 
heartbeats in the form of images, achieving an overall 
91% accuracy. More recently, 1D ECG signals have been 
accurately classified in ResNet models, eliminating the 
need for prior 2D transformations [29], [30]. In their 
work, Khan et al. [29] implemented a 1D ResNet with six 

convolutional layers and three max pooling layers to 
classify arrhythmia single-lead ECG heartbeats. In 
addition, they used SMOTE to balance the minority 
classes which helped them achieve 98.63% accuracy, 
92.41% sensitivity, and 99.06% specificity.    

Although all the aforementioned methods 
achieved great accuracy on ECG arrhythmia 
classification signals, little has been done on the 
multimodal physiological signals. Blood pressure signals 
such as ABP and photoplethysmogram (PPG) have been 
first used for arrhythmia classification by Kalidas et al. 
[31] in the Physionet/Computing in Cardiology 2015 
Challenge with the goal of suppressing false alarm 
generation in ICU. In their work, they applied spectra and 
time-domain feature extraction on the ECG, ABP and PPG 
signals, which then were fed into an SVM for the final 
classification, achieving a sensitivity of 94% and 
specificity of 86%. In [32], Arvanaghi et al. used 
frequency, power, and entropy features extracted from 
ECG and ABP signals in a Least Square SVM (LS-SVM) 
classifier. The method achieved an accuracy, sensitivity, 
and specificity rates of 95.75%, 96.77%, and 96.32%. In 

Figure 2. The overall procedure of the proposed method. We begin by filtering signals using DWT and normalising them 
to [-1, 1]. Signal segmentation differs for ECG and blood pressure signals. Initially, we identify ECG R peaks with the Pan-

Tompkins algorithm and select heartbeats with an 800ms interval around each R peak. To accommodate the timing disparity 
between ECG R peaks and ABP/CVP systolic events, we segment ABP and CVP signals with 200ms before and 600ms after the R 

peak locations. Finally, we input these three channels together, individually or in combinations into CNN-LSTM, ResNet50, 
ResNet34, and ResNet18 models for the final heartbeat classification. 
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a different study, Arvanaghi et al. demonstrated the 
contribution of the ABP signals in arrhythmia 
classification by utilising them alone in a CNN classifier 
under the form of scalograms, reaching 90.16% F1-
score, 89.03% accuracy, and 81.46% sensitivity. In [33] 
the advantage of incorporating the ABP was again 
highlighted. Two class arrhythmia classification was 
performed on ECG features only, and on ABP and ECG 
features together. The accuracy of the model achieved 
89% only with ECG features versus 96.6% when using 
both ABP and ECG. 

Numerous studies have been conducted on 
automatic ECG heartbeat classification models, leading 
to impressive accuracies as high as 99.75%. However, 
these studies have predominantly focused on ECG 
signals, neglecting the potential utilisation of other 
physiological signals, such as ABP, PPG, and CVP signals, 
which are easily accessible in ICU patients. Moreover, 
while many of these studies have successfully identified 
paced beats, none were able to distinguish various sub-
classes of paced heartbeats. There are a few ways of 
splitting the heartbeats in the context of heartbeat 
classification. Researchers either follow the Association 
for Advancement of Medical Instrumentation (AAMI) 
standards, which do not directly include paced beats and 
split the data into non-ectopic (N), supraventricular 
ectopic (S), ventricular ectopic (V), fusion (F), and 
unknown (Q) beats, or follow the guidelines given by 
clinicians and split the datasets into normal (N), left 
bundle branch block (LBBB), right bundle branch block 
(RBBB), premature ventricular contraction (PVC), and 
paced beat (P). Either way, the paced beats are not 
distinguished by the settings given by the pacing device, 
and a more comprehensive distinction is crucial as it not 
only aids in the identification of pacing settings but also 
facilitates the detection of inadequate pacing settings, a 
critical aspect in patient care. Furthermore, the 
integration of multi-modal signals holds the potential to 
improve the detection accuracy, particularly in ICU 
settings where patients may inadvertently displace ECG 
leads due to their unconscious state or movement. 

 

3. Materials and Methods 
The overview of the proposed method can be seen 

in Figure 1. Pre-processing involving noise filtering, 
normalisation and segmentation of the signals in 
individual heartbeats are first performed. The 
classification is first performed on the entire set of 
signals (ECG+ABP+CVP) using different deep learning 
architectures such as CNN-LSTM, ResNet18, ResNet34, 

and ResNet50. The model providing the most accurate 
results is then used to assess the potential of each signal 
as follows: ECG, ABP and CVP are individually used for 
classification, then we use the blood pressure signals 
(ABP and CVP) together. In the end, we assess the 
scalability and generalizability of the proposed 
methodology by choosing the model with the best 
performance and using it on the MIT-BIH arrhythmia 
database. 

 
3. 1. Dataset 

The dataset used in this study consisted of 
simultaneous lead v1 ECG, ABP and CVP signals collected 
at a sampling frequency of 1000 Hz in Harefield Hospital 
London from patients in the ICU following cardiac 
surgery. The arrythmia dataset consists of 29 patients, 
with five different arrhythmias: sinus rhythm (SR), atrial 
fibrillation (AF), atrial tachycardia (AT), left bundle 
branch block (LBBB), and premature ventricular 
contractions (PVC). The paced dataset consists of 25 
patients with 12 classes: atrial and ventricular paced 
(APVP) for AV delay setting of 40, 80, 120, 160, 180, 200, 
220, 240, 280, and atrial paced ventricular sensed 
(APVS) for AV delays of 200, 240, 280, 320. This study 
was approved by the South West - Cornwall and 
Plymouth Research Ethics Committee as part of the 
PACESIM trial (ISRCTN15383573). All patients gave 
written informed consent.  

In order to evaluate our model against the 
literature we used lead 2 from the MIT-BIH arrhythmia 
dataset, an open-sourced database provided by the 
Massachusetts Institute of Technology that contains a 
collection of long-term ECG recordings for arrhythmia 
analysis that were recorded with a sampling frequency 
of 360 Hz. The heartbeats extracted from MIT-BIH 
database where grouped according to the AAMI 
standard. 

 
3. 2. Data Pre-processing 

Signals recorded in ICU patients are often highly 
affected by noises caused by electronic devices, motion 
or electrode artefacts. The CVP, for instance, is highly 
affected by respiration, with values increasing during 
inspiration and decreasing during expiration, whereas 
ECG signals present multiple motion and electrode 
artefacts. To remove these noises, we applied DWT on all 
three signals, each being decomposed with a different 
wavelet: biorthogonal for the ECG and CVP signals, and 
Daubechies for ABP signals. Then we normalised all 
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three signals in the [-1;1] range and performed ECG R 
peak detection using Pan-Tompkins algorithm.  

The heartbeat segmentation of the signals has 
been approached differently for ECG and blood pressure 
signals, respectively. As it can be seen in Figure 2, the 
delay between the ventricular contraction of the heart 
and the response seen in the haemodynamic waveforms 
causes a delay between the R peaks seen in the ECG 
signals and the systolic upstroke and a wave in the ABP 
and CVP, respectively. This phenomenon needs to be 
reflected in the segmentation strategy. Therefore, the 
ECG heartbeat segmentation was performed using 800 
milliseconds (ms) around the R peak, whereas the CVP 
and ABP are segmented using 200ms before the location 
of the R peaks and 600ms after the R peaks location. In 
this manner we are able to align each heartbeat with the 
correct corresponding ABP and CVP response.  

 
3. 3. Classification  

The classification was performed using two types 
of architectures: a hybrid model using CNN and LSTM 
layers and ResNet models. LSTM and CNN models are 
well known for their ability of accurately classifying 
arrhythmias. However, when combining both CNN and 
LSTM layers, the models are capable of capturing not 
only local spatial features, but also long-term temporal 
dependencies. In this work, the proposed CNN-LSTM 
model is shown in Figure 3. This has two 1D 
convolutional layers, each followed by 1D batch 
normalisation layers, ReLu activation function, max 
pooling and dropout layers. The convolutional layers are 
then followed by two LSTM layers, and 2 fully connected 
layers at the end. The ResNet architectures, on the other 
hand, follow the same architectures adopted in the well-
known ResNet18, ResNet34 and ResNet50 models, with 
the exception that in our work we will use 1D layers able 
to use one or multiple channels at once, as opposed to 2D 
layers which need prior transformations and fusion of 
the channels. As explained in Section 2, ResNets have 
shown increased performance compared to traditional 
CNN layers due to their ability of propagating the 
information from deeper layers in an efficient and stable 
manner, which led us to explore their potential on 
multimodal channel arrhythmia classification.  

 
3. 4. Evaluation Metrics   

The performance of multi-class classification 
models is assessed using well-known metrics such as 
accuracy (Acc), sensitivity (Sen), precision (Pre) and F1-
score. The Acc represents the overall performance of the 

model’s predictions and, as shown in Eq. (1), is 
calculated as the ratio between the sum of the true 
positives (TP) and true negatives (TN) and the number 
of total predictions, which is the sum of correct 
predictions, the false positives (FP) and false negatives 
(FN). The Sen assesses the ability of a model to correctly 

 

Figure 3. The architecture of the proposed CNN-LSTM 
model. 

identify TP instances and is calculated using Eq. (2).  Pre 
represents the ability of the model to identify positive 
instances out of all the instances predicted as positive, as 
seen in Eq. (3). The F1-score, combines Pre and Sen, as 
shown in Eq. (4). 

 

𝐴𝑐𝑐 (%) =  
(TP+TN)

(TP+TN+FP+FN)
× 100                     (1) 

𝑆𝑒𝑛 (%) =  
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
× 100                                            (2) 

𝑃𝑟𝑒 (%) =  
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
× 100                                            (3) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 (%) = 2 ×
(𝑃𝑟𝑒 ×𝑆𝑒𝑛)

(𝑃𝑟𝑒+𝑆𝑒𝑛)
× 100                       (4) 

 
4. Results and Discussion 

The classification performance was analysed for 
four categories: overall performance of the models on 
the arrhythmia dataset, the performance of the best 
model on the arrythmia dataset when using one-channel 
and hemodynamical signals only, overall performance of 
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the models on the paced dataset and the performance of 
the best model on the paced dataset when using different 
signals and combinations of signals. The data is first split 
into training set, consisting of 70% of the data, validation 
set and testing set, both consisting of 15% of the data. We 
also employed a stratified split to maintain the class 
distribution, ensuring that each class is adequately 
represented in both the training, validation, and testing 
datasets. When analysing the performance of individual 
signals, we split the data and train the models using ECG, 
ABP and CVP signals individually. 
 

4. 1. Multi-channel Arrhythmia Classification  
The overall arrhythmia classification results 

obtained on our arrhythmia dataset containing all three 
sets of signals can be seen in Table 1. First, 
hyperparameter optimisation was performed on the 
models using the Weights and Biases module, a machine 
learning experimentation platform in Python. We tested 
Adam, AdamW, Root Mean Square Propagation 
(RMSprop), AdamW and Stochastic Gradient Descent 
(SGD) optimizers, with learning rates ranging from 
0.0001 to 0.1, and three different batch sizes of 8, 16 and 
32. Random hyperparameter method was used in the 
experiments; this generates random combinations of 
hyperparameters values from the predefined search 
space. The obtained results suggested as common 
hyperparameters for all the models a learning rate of 
0.0003, a batch size of 16 and Adam optimiser with the 
default beta values. We used the same hyperparameters 
across all the tested models, which were developed using 
PyTorch 3.7.  

The best results are achieved when using the 
ResNet50 model, with an Acc that reaches up to 99.58%, 
a Sen of 99.59%, Pre of 99.58% and an F1 score of 
99.57%, all of which are comprehensively presented in 
Table 1. The progression of the loss in the ReNet50 
model during both training and validation phases can be 
seen in Figure 4. Notably, all of the models achieved good 
accuracies over 98%, with smallest results obtained 
using the CNN-LSTM network, which is also the network 
with the simplest architecture. The second-best 
classifiers are ResNet18 and ResNet34, with results very 
similar to one another. This demonstrates that deeper 
CNNs architectures that use residual connections, such 
as the ResNet architectures that we tested, are able 
preserve the information flowing through the network 
and can bridge the gap between a good classifier and one 
that reaches a performance near perfection. 

Table 1. Overall performance of the arrhythmia classification 
models when using all three signals: ECG, ABP and CVP 

Overall 
results (%) 

CNN-
LSTM 

ResNet
18 

ResNet
34 

ResNet
50 

Acc 98.59 99.38 99.38 99.58 
Pre 98.65 99.40 99.41 99.59 
Sen 98.59 99.37 99.38 99.58 

F1 score 98.55 99.37 99.37 99.57 
 

 

Figure 4. Training and validation loss curves of the 
ResNet50 model when using ECG, ABP and CVP signals. 

4.2. Arrhythmia Classification Across Varied 
Channels 

ResNet50 classifier was then used to assess the 
classification performance of each individual channel 
and combinations of channels due to its outstanding 
performance shown on multi-channel classification. This 
is done to test the ability of individual signals of being 
used alone in the classification of arrhythmias, especially 
in ICU where patients are prone to sudden changes in 
their cardiac state and ECG electrodes might not always 
be properly positioned and recorded. Table 2 illustrates 
the performance metrics obtained on the test set when 
using the ResNet50 classifier on different signals and 
combinations of signals. As expected, among all three 
individual signals, ECG alone performs better than ABP 
and CVP, respectively. Specifically, when using only the 
ECG signal, an accuracy of 99.38% is achieved. In 
contrast, using the ABP signal yields an accuracy of 
98.79%, while using the CVP signal results in an accuracy 
of 96.67%. When we use the ECG channel along with 
blood pressure channels, the accuracy of heartbeat 
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classification significantly increases. Specifically, when 
combining ECG with ABP, we achieve a remarkable Pre 
of 99.95%. Likewise, when combining ECG with CVP, we 
attain a high Pre of 99.68%. Nevertheless, the 
classification results achieved on the individual blood 
pressure signals demonstrate the ability of ABP and CVP 
signals to capture changes in the conduction of the heart, 
even in the absence of ECG leads.  

Table 2. The testing performance metrics of ResNet50 
classifier on different one-channel and combination of 

channels as opposed to the multi-channel performance. 

Signal Acc (%) Sen (%) Pre (%) 
ECG+ABP+CVP 99.58 99.58 99.60 

ECG 99.38 99.38 99.41 
ABP 98.79 98.70 98.78 
CVP 96.67 96.68 96.73 

ABP+CVP 98.19 98.19 98.29 
ECG+ABP 99.80 99.68 99.95 
ECG+CVP 99.80 99.95 99.68 

 
4.3. Multi-channel Paced Heartbeats Classification   

Similar to the previous sections, we first 
performed hyperparameter optimisation on the models 
using the Weights and Biases module. For the CNN-LSTM 
and ResNet18 models, we found that RMSprop is the 
most effective optimizer, using a learning rate of 0.001. 
However, for ResNet34, RMSprop with a learning rate of 
0.0001 works best, while for the ResNet50 model, SGD 
with a learning rate of 0.01 proved to be the optimal 
choice. Additionally, we used a batch size of 8 for both 
the CNN-LSTM and ResNet34 models, while a batch size 
of 32 was optimal for ResNet18. In contrast, ResNet50 
achieved the highest performance when using the SGD 
optimizer, a learning rate of 0.01, and a batch size of 16. 

The overall results obtained on our paced dataset 
containing all three sets of signals can be seen in Table 3. 
The ResNet34 model outperforms the others, achieving 
an Acc of 93.82%, a Sen of 93.33%, Pre of 94.54%, and an 
F1 score of 93.78%. Nonetheless, we can see that all 
ResNet classifiers yielded similar results, with Acc 
between 93% and 94%, while the CNN-LSTM classifier 
lags behind with an Acc of 80%.  A detailed breakdown 
of Pre, Sen, and F1 score for each class obtained using the 
ReNet34 model can be seen in Table 4. The results show 
that 8 out of 12 classes achieved a Pre over 90% with 
some classes reaching 100% Pre, whereas just 4 classes 
yield a Pre between 82% and 90%.  

Table 3. Overall performance of the paced classification 
models when using all three signals: ECG, ABP and CVP. 

Overall 
results (%) 

CNN-
LSTM 

ResNet
18 

ResNet
34 

ResNet
50 

Acc 80.01 94.38 93.82 92.51 
Pre 84.50 94.29 94.54 92.37 
Sen 75.64 93.09 93.33 92.71 

F1 score 79.06 93.41 93.78 92.48 

Table 4.  The classification performance of the ResNet34 
model on each individual class. 

Paced Class Pre (%) Sen (%) F1 score (%) 
APVP_AVD120 94.75 93.42 94.08 
APVP_AVD160 89.61 90.79 90.20 
APVP_AVD200 91.49 92.47 91.98 
APVP_AVD240 87.50 92.11 89.74 
APVP_AVD280 95.45 91.30 93.33 
APVP_AVD40 93.83 88.89 91.29 
APVP_AVD80 86.21 92.59 89.29 

APVS_AVD200 100 91.67 95.65 
APVS_AVD220 100 100 100 
APVS_AVD240 91.21 94.32 92.74 
APVS_AVD280 96.55 94.92 95.73 
APVS_AVD320 81.82 90.00 85.71 

 

4.4. Paced Heartbeats Classification Across Varied 
Channels 

The model that demonstrated superior 
performance when utilizing multi-channel data, 
specifically ResNet34, was subsequently employed to 
evaluate the classification performance of each isolated 
signal, the hemodynamic signals exclusively and 
combinations between the ECG lead and each of the 
blood pressure signals. This evaluation aimed to gauge 
the impact of ECG, ABP, and CVP signals on the 
classification of paced heartbeats by examining whether 
these signals contribute to information gain or loss.  

Table 5 displays the results obtained from various 
signal combinations for analysis. When examining 
individual signals, ECG stands out as the top performer, 
achieving an Acc of 92.86% and a Pre of 92.27%. 
Conversely, among the haemodynamic signals, the ABP 
signal demonstrates the weakest classification 
performance with an Acc of 74.04%, Sen of 74.65%, and 
Pre of 73.96%. This outcome aligns with expectations 
since changes in pacing settings aren't effectively 
represented in the ABP signal's morphology. When  
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evaluating CVP signals on their own, they yield an Acc of 
74.38% and a Pre of 76.62%. However, the performance 
significantly improves to 91.62% Acc when combining 
ECG and ABP signals, and 93.41% when combining ECG 
and CVP signals. These findings suggest that combining 
ECG and CVP signals offers slightly better results for  
distinguishing between paced heartbeats compared to 
ECG and ABP signal combinations.  

Table 5. The testing performance metrics of ResNet34 
classifier on different one-channel and combination of 

channels as opposed to the multi-channel performance. 

Signal Acc (%) Sen (%) Pre (%) 

ECG+ABP+CVP 93.82 93.33 94.54 
ECG 92.86 91.92 92.27 
ABP 74.04 74.65 73.96 
CVP 74.38 74.83 76.62 

ABP+CVP 80.91 82.59 82.24 
ECG+ABP 91.62 91.10 91.95 
ECG+CVP 93.41 92.60 93.24 

 
4.5.  Contextualizing Our Results 

Table 6 illustrates the performance metrics 
obtained on the test set when using our models on 
different signals and combinations of signals in 
comparison with other methods used in the literature 

Study Year Method Signal Dataset 
Acc 
(%) 

Sen 
(%) 

Pre 
(%) 

[20] 2018 1D-CNN-LSTM ECG- lead II MIT-BIH arrhythmia 98.10 97.50 98.70 
[14] 2019 1D-CNN ECG- lead II MIT-BIH arrhythmia- 98.30 95.51 - 
[27] 2021 2D-ResNet101 ECG- lead II MIT-BIH arrhythmia 99.75 91.36 99.85 
[24] 2022 1D-CNN ECG- lead II MIT-BIH arrhythmia 99.33 98.52 99.60 
[28] 2022 2D-ResNet50 ECG- lead II MIT-BIH arrhythmia 91.00 - - 
[29] 2023 1D-ResNet ECG- lead II MIT-BIH arrhythmia 98.63 92.41 99.06 

 2016 RF ECG+ABP +PPG 
Computing in Cardiology 

(CinC) Challenge 2015 
90 - - 

[31] 2016 SVM ECG+ABP +PPG 
Computing in Cardiology 

(CinC) Challenge 2015 
- 94.00 86.00 

[33] 2017 MLP 
ECG 

ECG +ABP 
MINIC physioNet  

89.00 
96.60 

- - 

[32] 2017 LS-SVM ABP - 95.75 96.77 - 

[35] 2022 2D-CNN ABP 
Multi-Parameter databases 

(MIMIC) 
89.03 81.46 99.50 

[7] 2023 1D-ResNet50 ECG+ABP+CVP Our arrhythmia dataset 99.58 99.58 99.60 
[7] 2023 1D-ResNet50 ECG Our arrhythmia dataset 99.38 99.38 99.41 
[7] 2023 1D-ResNet50 ABP Our arrhythmia dataset 98.79 98.70 98.78 
[7] 2023 1D-ResNet50 CVP Our arrhythmia dataset 96.67 96.68 96.73 
[7] 2023 1D-ResNet50 ABP+CVP Our arrhythmia dataset 98.19 98.19 98.29 

Ours 2023 1D-ResNet50 ECG+CVP Our arrhythmia dataset 99.80 99.95 99.68 
Ours 2023 1D-ResNet50 ECG+ABP Our arrhythmia dataset 99.80 99.68 99.95 
[7] 2023 1D-ResNet50 ECG-lead II MIT-BIH arrhythmia 98.78 98.77 98.80 

Ours 2023 1D-ResNet34 ECG+ABP+CVP Our paced dataset 93.82 93.33 94.54 
Ours 2023 1D-ResNet34 ECG Our paced dataset 92.86 91.92 92.27 
Ours 2023 1D-ResNet34 ABP Our paced dataset 74.04 74.65 73.96 
Ours 2023 1D-ResNet34 CVP Our paced dataset 74.38 74.83 76.62 
Ours 2023 1D-ResNet34 ABP+CVP Our paced dataset 80.91 82.59 82.24 
Ours 2023 1D-ResNet34 ECG+ABP Our paced dataset 91.62 91.10 91.95 
Ours 2023 1D-ResNet34 ECG+CVP Our paced dataset 93.41 92.60 93.24 

Table 6. The testing performance obtained by different research in relation to the proposed classifiers. 
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using the same channels. The first works that used 
multimodal signals for heartbeat classification were a 
result of the PhysioNet/Computing in Cardiology 
Challenge 2015 Reducing False Arrhythmia Alarms in 
the ICU. In [34], the authors extracted physiological and 
signal quality features and fed them to Random Forest 
(RF) models for the final classification. They achieved an 
average Acc of 90% on 5 classes, using paired RF 
classifiers. In [33], the authors performed arrhythmia 
classification using fused wavelet coefficients from ECG 
and ABP signals. Subsequently, the fused signals were 
used to extract frequency features that were given as 
input to a multi-layer perceptron neural network, 
achieving an Acc of 96.6%, 96.9%, 95.6% and 93.9% for 
2, 3, 4 and 5 classes, respectively. Later, the same group 
proposed a Least Square SVM (LS-SVM) classifier that 
reached an accuracy of 95.75% and a Sen of 96.77% for 
6 different arrhythmia classes using only ABP signals 
[32]. Compared to the previously mentioned studies, our 
approach demonstrated exceptional Acc, surpassing 
99% for arrhythmia classification and achieving over 
93% for paced class classification when we utilized ECG, 
ABP, and CVP channels collectively. When we evaluated 
each signal individually, we still achieved high accuracy, 
exceeding 90% for arrhythmia classification. 
Nonetheless, the accuracy dropped when distinguishing 
between various paced classes. This drop in Acc can 
primarily be attributed to the challenging task of 
distinguishing between different pacing settings, as 
these settings often produce similar signals. This 
similarity is particularly noticeable in the ABP and CVP 
signals, as they are not directly affected by changes in 
pacing settings. 

Table 6 also presents our heartbeat classification 
results, which were obtained by training the ResNet50 
model on the MIT-BIH arrhythmia database. This allows 
for a fair comparison with the methods listed in the table. 
As we can see, our results are comparable with the 
methods proposed in the literature when using the 
ResNet50 classifier, not only for our dataset, but also 
when applied to the MIT-BIH arrhythmia database. 
When using ECG lead II from MIT-BIH dataset to train the 
developed ResNet50 classifier, we achieved an Acc of 
98.78%, Pre of 99.80% and Sen of 98.77%. This 
demonstrates that the proposed method is not only 
accurate, but it also achieves remarkable results across 
different datasets.  

 
 

 

5. Conclusion 
In this work, different deep learning methods 

including CNN-LSTM and different ResNet architectures 
were proposed for classification of 5 different 
arrhythmias and 12 different pacing scenarios using 
ECG, ABP and CVP signals collected in Harefield Hospital 
London. To be able to use these signals and correctly   
match the ECG heartbeat and the corresponding waves 
on the ABP and CVP signals, we employed a different 
segmentation approach which considers the delay 
between the ECG heartbeat and the response in the 
haemodynamic waveforms. These models, particularly 
the ResNet34 and ResNet50, can accurately extract 
features and classify the heartbeats taken from three 
channels without the need of any prior feature extraction 
techniques. Moreover, the presented results 
demonstrate the ability of individual haemodynamic 
signals of capturing changes that arise with the presence 
of arrhythmias, as well as changes that can distinguish 
among different pacing settings. This is important, as it 
highlights the ABP and CVP signals potential of being 
used in classification models for accurate heartbeat 
classification in the ICU, where these signals are already 
collected from patients for monitoring purposes. When 
comparing our results with the ones present in the 
literature (Table 6), we can conclude that this study 
achieves significant results not only when using our 
dataset, but also on the MIT-BIH arrhythmia database. 
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