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Abstract - Quantification of biomechanical load is crucial to 
gain insights in the mechanisms causing running related 
injuries. Ground reaction forces (GRF) can give insights into 
biomechanical loading, however, measuring GRF is restricted to 
a gait laboratory. Developments in inertial sensor technology 
make it possible to measure segment accelerations and 
orientations outside the lab in the runners’ own environment. 
The main objective of this study is to estimate vertical GRF with 
three inertial measurement units using a generic algorithm 
based on Newtons second law. When using Newton’s second law, 
it is known that the mass distribution per corresponding 
acceleration and filtering settings of the acceleration signal do 
have an influence on the estimated force. Therefore, filtering 
settings and the mass of the segments were optimized in this 
study. To apply Newton’s second law to the full body, the 
accelerations and masses of every segment should be known. 
However, this requires >10 sensors. By minimizing the number 
of segments to three, a setup is created that is less obtrusive. 
Twelve rear foot strike (RFS) runners performed nine trials at 
three different velocities (10, 12 and 14km/h) and three 
different stride frequencies (low, preferred, high), on a 
instrumented treadmill. Inertial measurement units were placed 
at sternum, pelvis, upper legs, tibias and feet. An optimization 
was performed to find the optimal sensor configuration. The 
root mean squared error (RMSE) between the estimated GRF 
and measured GRF was used as loss function in the optimization. 
As performance measure of the algorithm, RMSE, active peak 
error and Pearson’s correlation coefficient were used. The setup 
with sensors on the tibia and pelvis showed the best result, with 
an average RMSE of 0.179 bodyweight, peak error of 3.6% and 
Pearson’s correlation coefficient of 0.98. Using leave-one-
subject-out cross validation, it is shown that the algorithm is 
generalizable within the population of RFS runners. Model 
performance decreases with velocity but increases with stride 
frequency. The main error of the algorithm is seen in the first 
25% of the stance phase, however, the general performance is 

comparable or better than what is described in current 
literature. 
 

Keywords: Ground reaction force, running, inertial 
measurement units 
 
© Copyright 2022 Authors - This is an Open Access article 
published under the Creative Commons Attribution               
License terms (http://creativecommons.org/licenses/by/3.0). 
Unrestricted use, distribution, and reproduction in any medium 
are permitted, provided the original work is properly cited. 
 

1. Introduction 
Worldwide, running is a very popular sport. 

Unfortunately, a lot of runners are plagued by injuries 
[1]. Monitoring biomechanical load and especially 
changes in biomechanical load can help in understanding 
the development of running related injuries [2]. Ground 
reaction force (GRF) is seen as an important measure to 
quantify biomechanical load during running [3]. 
Furthermore, inverse dynamics can be applied to 
estimate structure specific load if GRFs are linked with 
kinematics. However, the measurement of GRF is 
restricted to the laboratory setting as a force plate or an 
instrumented treadmill is needed to measure the forces. 
A sensor set-up with a minimal amount of sensors to 
quantify GRF as a measure of biomechanical load would 
be of great help in (longitudinal) studies to get a better 
understanding in the development of running injuries 
[2], [4] and monitoring training loads. 

Inertial measurement units (IMUs) can be used to 
estimate GRFs, for example, it is shown that there is a 
relation between peak tibial acceleration and the peak 
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vertical ground reaction force [5]. More recently, a 
Kalman based method was used to estimate the GRF 
during the whole stance phase, however there was still 
an error in the estimated peak value (6.1-7.1%) and 
relatively high error in the loading rate (>24%) [6]. 
Furthermore, it is shown that an artificial neural 
network is capable in estimating vertical GRFs from IMU 
data [7]. However, it appears to be difficult to create 
general models, applicable to a large group of subjects 
when using machine learning methods [7]. Furthermore, 
it appears to be hard to estimate the absolute values of 
the GRF [8]. For methods based on a physical model, it is 
shown that IMU filter settings (cut-off frequency and 
order) do influence the GRF estimations [9]. Besides 
filtering, the mass distribution over the various body 
segments plays a role in the performance of the GRF 
estimation algorithm [10]. To apply Newton’s second 
law to the full body, the acceleration per segment and 
corresponding mass should be known, leading to a 
model with >10 segments. Such a setup is obtrusive for 
the runner. As we know that the body centre of mass is 
located in the trunk, accelerations of the trunk multiplied 
with its mass would mostly give a rough estimation of 
the GRF. In RFS running, the GRF profile has an impact 
and an active peak [11]. The legs are absorbing most of 
the impact shortly after ground contact. Therefore it was 
reasoned that a configuration with a sensor on the trunk 
and on each leg would be capable to estimate vertical 
GRF in running. The optimal filter settings and mass 
distribution for the three segments can be obtained with 
an optimization, such that the difference between 
estimated GRF (eGRF) and measured GRF (mGRF) is 
minimal. 

An algorithm intended to be used in the runners’ 
environment should be robust to variations in different 
parameters. It is already shown that accuracy can be 
dependent on running speed [10], but the algorithm 
should also work at a range of stride frequencies. Hence, 
the effect of running velocity and stride frequency on the 
performance of the algorithm is quantified. 

The primary objective of this work is to estimate 
vertical GRF with three IMUs using a generic model 
based on Newtons second law. The secondary objective 
is to validate the model for different velocities and stride 
frequencies. Since filter frequencies, filter orders and 
mass distribution play a role in the performance of the 
GRF estimation, these parameters will be optimized in 
this study. 

 
 

2. Material and Methods 
2. 1. Experimental Design and Measurement Setup 

Twelve healthy experienced heel strike runners 
participated in this study (4F, 8M; age 31.6y ± 9.0y, 
height 1.80m ± 0.11m, mass 74.3kg ± 17.5kg). All 
participants signed a written informed consent and the 
protocol was approved by the medical ethical committee 
(CCMO Arnhem-Nijmegen). 

Participants were equipped with inertial sensors 
following the lower body configurations of the Xsens 
MVN Link system, (Xsens Technologies, Enschede, The 
Netherlands) with a sampling frequency of 240Hz, using 
double sided tape. Sensors were placed on the sternum, 
pelvis, both feet, both tibias (proximal) and both upper 
legs. On top of the sensor, additional tape was placed and 
leg sleeves were pulled over the tibia sensors to prevent 
movement artefacts. After sensor placement, a sensor to 
segment calibration was performed according to the 
manufacturer’s instructions.  

GRF data was collected using a 3-dimensional 
force plate instrumented dual-belt treadmill (Y-mill, 
Motek Medical, Amsterdam, The Netherlands) at a 
sampling frequency of 2048Hz. 

First, the subject mass was determined during a 
static trial on the force plate. Then, the participants ran 
at three different speeds in random order (10, 12 and 
14km/h) and three different stride frequencies, relative 
to their preferred stride frequency (100, 110 and 90%) 
for 90 seconds. For each speed, the preferred stride 
frequency was determined during the first trial. In the 
other two trials, the stride frequency was imposed using 
a metronome. Each trial started with three jumps for 
synchronization of the IMUs and treadmill. There was a 
3-minute break between the trials to prevent the 
participants from fatiguing.  

  
2. 2. Data Processing 

mGRF data was filtered using a sixth-order, zero-
phase shift low pass Butterworth filter with a cut-off 
frequency (Fc) of 30Hz. Next, this data was resampled to 
240Hz to match the IMU system. Then, the GRF data was 
normalized for body weight. From the IMUs, the sensor 
free acceleration is used. This is the gravity subtracted 
acceleration in the global frame. Next, the cross 
correlation between the sensor free acceleration of the 
tibia in vertical direction with the vertical mGRF was 
calculated. The lag value corresponding to the maximum 
in the correlation was used to synchronize the treadmill 
and IMUs. 
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40 strides were extracted from the middle part of 
each trial and used for the fitting and evaluation of the 
(eGRF). Data was labelled as flight-phase if the mGRF 
was <25N for longer than 0.05s and as stance-phase if 
the measured GRF was >25N for longer than 0.05s. 

 

2. 3. GRF Estimation Model 
Six different sensor configurations were created, 

combining two sensors on the leg (tibias, thighs or feet) 
and one on the trunk (pelvis or sternum). To obtain eGRF 
from acceleration using three sensors, Newton’s second 
law is used as shown in Eq. 1. 

𝑒𝐺𝑅𝐹 = (𝑚𝑏 × 𝑔) +∑𝑚𝑏 ×𝑊𝐹𝑖 × (𝑎𝑧,𝑖)

3

𝑖=1

 (1) 

 

mb Represents the body mass of the subject, g the 
gravitational acceleration, i the sensor number, WF the 
weight factor and az the sensor free acceleration in 
vertical direction. The eGRF was normalized for body 
weight (BW). 

WF should correspond to the fraction of body mass 
corresponding to the segment where the sensor is 
attached. Since we have two symmetrically placed 
sensors on the legs, we assume the corresponding 
weight factors to be equal. Also, the sum of all weight 
factors should equal one to ensure the full body mass 
being used. Hence, only one parameter for WF had to be 
optimized in the case of three sensors. 

Besides the weight factor, it is shown that IMU 
filter properties influence eGRF [9]. Therefore, the IMU 
filter cut-off frequencies and orders of the used sensors 
are included in the optimization. Again, due to assuming 
symmetry, the filter settings for the leg sensors were 
assumed to be equal. 

 

2. 4. Model Optimization 
An optimization was performed where one weight 

factor WF, two filter orders and two cut-off frequencies 
were optimized. This optimization is performed using 
the Optuna optimization framework [12]. The loss 
function is defined as the root mean squared error 
(RMSE) between the eGRF and mGRF during stance-
phase. This value was minimized using an optimization 
with 1000 trials. The optimization was initiated 5 times 
and the best results were used. The weight factor was 
optimized between 0 and 1, cut-off frequencies between 
0.5 and 50Hz and the orders between 2 and 8 with 
increments of 2. 

 
 

2. 4. Model Evaluation 
The main performance metric is RMSE between 

mGRF and eGRF  during stance phase. This metric is 
indicative for the accuracy over the full stance phase. 
Further, Pearson’s correlation coefficient is calculated 
between mGRF and eGRF. Also, the absolute (active) 
peak error is calculated in bodyweights and as a relative 
value. To evaluate the generalizability of the models, 
leave-one-subject-out-cross-validation was performed 
for the best sensor configuration. The same principle 
was used to investigate the generalizability to velocity 
and stride frequency. Each time, one velocity or stride 
frequency was left out while the parameters were 
optimized for the other velocities or stride frequencies. 
Filter orders were fixed for this purpose based on the 
best results with the full data set.  

Lastly, a sensitivity analyses on the optimized 
parameters is performed to inspect the sensitivity to 
changes in the cut-off frequencies and the weight factor. 
All combinations of cut-off frequencies between 4-20Hz 
(sensor on legs) and 4-12Hz (sensor trunk) were 
analysed, and the performance metrics were shown in a 
heatmap. For the weight factor, the values between 0.3 
and 0.8 were analysed.  

All data processing and optimizations were done in 
Python 3.8. 
 

3. Results 
With a RMSE of 0.179 body weight (BW), the 

pelvis-tibias configuration had the best performance 
(Table 1). This configuration also shows the lowest peak 
error (3.60%) and a very strong correlation between the 
eGRF and mGRF (r=0.98). From the WF, it can be 
concluded that the sensor on the trunk has a higher 
contribution to the estimate than the sensors on the 
lower body. For the configurations involving the feet, it 
is seen that there is hardly any contribution from the feet 
sensors (WF=0.97 and 0.96). 

The leave-one-subject-out cross validation shows 
variation in the performance per subject, a RMSE 
between 0.128 and 0.236BW is achieved (Table 2). For 
all subjects, there is a very strong correlation between 
eGRF and mGRF. The model parameters are relatively 
stable, with WF between 0.51 and 0.58, Fc pelvis 
between 5.6 and 6.6Hz and Fc tibias between 8.2 and 
8.8Hz. 

Model performance decreases with increasing 
speed, however, still a RMSE of 0.21BW is achieved at 
14km/h (Table 3, Fig. 1). Also, the model parameters 
remain relatively constant. Performance of the model is 
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best at high and preferred stride frequency (Table 4). At 
a lower stride frequency, the impact peak (at ~15% 
stance) is more prominent and also the active peak (mid-
stance) is slightly higher in the mGRF (Fig. 2). The largest 
deviation between eGRF and mGRF is in the first 25% of 
the stance phase. 

The sensitivity analyses shows that there is a 
surface between 7-10Hz for the tibias and 5.5-7.5Hz for 

the pelvis with a low RMSE, relative mean peak error and 
high Pearson’s correlation coefficient (Fig. 3). It is seen 
that the optimization curves for the different outcome 
measures differ. A weight factor for the pelvis between 
0.45 and 0.65 gives a RMSE <0.19BW, a relative mean 
peak error <4.6% and a Pearson’s correlation coefficient 
>0.97 (Table 5). 

Table 1. Effect of sensor configuration on estimated ground reaction force and model parameters 
Sensor 

configuration 

RMSE 

(BW) 

Absolute 

mean peak 

error 

(BW) 

Relative 

mean 

peak 

error (%) 

Pearson’s r WF pelvis 

/ sternum 

Fc pelvis / 

sternum 

Fc 
tibias / 
thighs / 

feet 

Order 

pelvis / 

sternum 

Order 

tibias / 

thighs / 

feet 

Pelvis + tibias 0,179 0,086 3,60 0,98 0,55 6,0 8,7 4 2 

Sternum + tibias 0,180 0,132 5,55 0,97 0,59 6,4 7,8 4 2 

Pelvis + thighs 0,208 0,093 3,90 0,97 0,63 4,2 6,7 4 4 

Sternum + thighs 0,192 0,084 3,50 0,97 0,45 6,6 4,7 8 2 

Pelvis + feet 0,236 0,113 4,72 0,96 0,97 4,4 34,8 6 8 

Sternum + feet 0,221 0,120 5,06 0,96 0,96 5,3 34,2 4 6 
 

Table 2. Leave-one-subject-out-cross-validation using the pelvis-tibias configuration. Orders were fixed at 4 (pelvis) and 2 
(tibias) 

Subject RMSE 

(BW) 

Absolute mean 

peak error 

(BW) 

Relative mean 

peak error 

(%) 

Pearson’s r WF pelvis Fc pelvis 

(Hz) 

Fc tibia 

(Hz) 

01 0,192 0,065 2,37 0,98 0,53 6,1 8,5 

02 0,128 0,048 2,10 0,99 0,56 5,9 8,8 

03 0,162 0,074 2,94 0,99 0,55 5,8 8,7 

04 0,170 0,050 2,09 0,98 0,53 6,1 8,7 

05 0,167 0,055 2,35 0,98 0,55 6,0 8,6 

06 0,228 0,192 7,45 0,97 0,58 5,6 8,9 

07 0,135 0,100 4,18 0,99 0,55 6,0 8,8 

08 0,194 0,056 2,29 0,98 0,53 6,2 8,6 

09 0,236 0,050 2,06 0,95 0,52 6,3 8,5 

10 0,165 0,099 4,74 0,97 0,51 6,6 8,2 

11 0,207 0,114 5,33 0,96 0,56 6,1 8,7 

12 0,169 0,164 7,30 0,98 0,55 6,1 8,8 

Mean 0,179 0,089 3,77 0,98 0,54 6,1 8,7 
 

(a) 

 

(b) 

 

(c) 

 

Figure 1. Measured and estimated GRF for 10, 12 and 14km/h, using the pelvis-tibias configuration. Filter orders were 
fixed at 4 (pelvis) and 2 (tibias) 
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Table 3. Performance per velocity using the pelvis-tibias configuration. Filter orders were fixed at 4 (pelvis) and 2 
(tibias) 

Speed 

(km/h) 

RMSE 

(BW) 

Absolute 

mean peak 

error (BW) 

Relative 

mean peak 

error (%) 

Pearson’s r WF pelvis Fc pelvis 

(Hz) 

Fc tibias 

(Hz) 

10 0,157 0,085 3,68 0,98 0,55 6,1 8,6 

12 0,176 0,083 3,46 0,98 0,54 6,1 8,6 

14 0,205 0,092 3,74 0,97 0,54 6,1 8,7 

 
Table 4. Performance per stride frequency using the pelvis-tibias configuration. Orders were fixed at 4 (pelvis) and 2 

(tibias) 
Relative stride 

frequency 

RMSE 

(BW) 

Absolute mean 

peak error (BW) 

Relative mean 

peak error (%) 

Pearson’s r WF pelvis Fc pelvis 

(Hz) 

Fc tibias 

(Hz) 

Low (90%) 0,189 0,090 3,68 0,98 0,53 6,1 8,7 

Preferred (100%) 0,174 0,082 3,42 0,98 0,54 6,2 9,3 

High (110%) 0,175 0,091 3,96 0,98 0,59 5,8 9,3 

 

(a) 

 

(b) 

 

(c) 

 

Figure 2. mGRF and mGRF for low (a), preferred (b) and high (c) stride frequency, using the pelvis-tibias configuration 
at all the speeds. Filter orders were fixed at 4 (pelvis) and 2 (tibias) 

 

(a) 

 

(b) 

 

(c) 

 

Figure 3. Sensitivity analyses with cut-off frequencies. (a) represents the effect on the RMSE, (b) the effect on peak 
error and (c) the effect on Pearson’s correlation coefficient. Weight factor was fixed at optimum value for the whole data set 

(0.54). The cross (x) indicates the optimum value for the RMSE value. 
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4. Discussion 
The purpose of this study was estimate vertical 

GRF with three IMUs using a Newton based approach. 
Using the pelvis-tibias configuration, a lower RMSE 
(<0.236BW, 0.179BW averaged over all data) compared 
to other work (0.27BW [7] and 0.28BW [13]) is achieved. 
The model shows a very strong correlation (Pearson’s 
r=0.98) with the measured GRF, comparable to other 
work (r=0.90-0.99 [7]). It is seen that accuracy decreases 
with speed but increases with stride frequency, 
indicating that as forces become larger, the estimation 
becomes less accurate. Note that RMSE is an absolute 
measure for error. However, if we look at the relative 
peak error and Pearson’s correlation coefficient, also a 
decrease in accuracy is seen towards 14km/h. 

As seen from the weight factor, the major 
contribution for the GRF estimation came from the 
sensor on the trunk (except for the sternum-thighs 
configuration). This is explained by the fact that the 
sensor on the trunk is closer to the centre of mass of the 
body. With the sternum-feet and pelvis feet 
configuration, there was hardly any contribution from 
the feet sensors (WF=0.96 and WF=0.97), but there was 
still a RMSE of 0.224BW. It is expected that a 
configuration with only one sternum sensor will have 
very similar results. Future research could investigate 
the accuracy of GRF estimation with only one IMU. 

From the leave-one-subject-out cross validation 
differences in performance per subject are seen. So is the 
lowest RMSE of 0.128BW found for S02, the largest value 
found for S09 and is the RMSE 0.179BW on average. If 
the algorithm is used on newly measured heel strike 
runners, it is expected that the RMSE falls within that 
range. The plots in Fig. 2 indicate that most of the error 
is seen in the first 25% of the stance phase (impact peak). 
Although peak GRF is a measure of interest [14], also 
loading rate or impact peak are used [15], where the 
latter two are extracted from the first 25% of the stance 

phase. This is a limitation of this algorithm. A solution 
could be to redefine the loss function to prioritize the 
first 25% of the stance phase in the optimization. 
However, this will go with a decrease in performance 
over the complete stance phase. The parameters of the 
optimizations in the leave-one-subject-out cross 
validations are within a small range, it can be assumed 
that adding more subjects would not have much impact 
on the optimum parameters of the algorithm. The 
sensitivity analyses also indicates that, if the optimized 
values are changed (for example because more subjects 
are added) it will not have much influence on the 
performance on the group level. 

Usually, IMU signals are filtered with an integer 
frequency as cut-off frequency (e.g. 100, 60 and 50Hz are 
commonly seen) [16]. Though, to get the optimal set of 
parameters of the model, it was chosen to optimize at a 
higher significance. However, if the found cut-off 
frequencies are rounded to the next integer, probably 
similar performance is obtained as shown by the 
sensitivity analyses (Fig 3.). 

Although the majority of runners has a heel strike 
[17], the model should be validated for other foot strike 
patterns as well to be applicable to non-heel strikers. It 
is known that GRF profile is dependent on the foot strike 
pattern, thus it might be the case that a different cut-off 
frequencies or weight factors are needed, resulting in 
different model parameters. Furthermore, the subjects 
included in this study were all experienced runners 
(>15km of running per week for 6 months). The 
algorithm should be validated on non-experienced 
runners as well. 

The current research was performed on a 
treadmill, however it is not limited to a lab setting. Before 
applying this method in practice, the implications of 
outdoor effects should be investigated. For example, the 
effects of running surface and incline running should be 
investigated. Testing the model for running surface is 

Table 5. Sensitivity analyses with the weight factor. Cut-off frequencies were fixed at the optimum values for the whole 
data set (6.0Hz for pelvis and 8.7Hz for tibia). The optimum was found at 0.54 

Weight 

factor pelvis 

0,30 0,35 0,40 0,45 0,50 0,55 0,60 0,65 0,70 0,75 0,80 

RMSE (BW) 0,223 0,209 0,196 0,187 0,181 0,179 0,181 0,186 0,195 0,207 0,222 

Relative 

mean peak 

error (%) 5,36 5,06 4,81 4,60 4,46 4,40 4,41 4,50 4,67 4,94 5,32 

Pearson’s r 0,960 0,966 0,970 0,974 0,976 0,976 0,976 0,975 0,972 0,969 0,964 
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very challenging, as it is hard to validate the estimations. 
However, first an outdoors validation where the model 
is tested outside the lab (e.g with a mobile force plate on 
instrumented track) is possible. Alternatively, a 
measurement protocol where both an indoors and 
outdoors setting are tested consecutively could be used. 
Besides the ability to bring the technology outside, it is 
important that the setup has a high test-retest 
repeatability. There are several factors that can influence 
this repeatability. It is shown that location of the IMU on 
the tibia matters, [18]  furthermore the attachment 
method of the IMU influences the measured values [16]. 
As the accuracy of the algorithm is highly dependent on 
the measured acceleration, it is important that the same 
location and attachment methods as this study are used 
when applying the algorithm. 

A future direction to improve the estimate of 
vertical GRF can be by combining a physical model with 
a machine learning model in a so-called hybrid model 
[19]. 
 

4. Conclusion 
The main goal of this study was to estimate vertical 

ground reaction force using three IMUs, robust for 
different speeds, stride frequencies and subjects. This 
study shows that it is possible to estimate vertical GRF 
outside the lab for heel strike runners at different 
velocities and stride frequencies with only 3 IMUs. This 
could help in the future to quantify biomechanical load 
in the runners’ own environment. 
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