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Abstract - Disease models have been a helpful resource 
which have guided health organizations in choosing 
appropriate interventions during the COVID-19 pandemic. 
However, most current models simulate disease spread on 
a countrywide/statewide level, lacking specificity for 
localities such as towns or counties. As a result, one-size-
fits-all policies are being instituted for entire states despite 
localities being heterogeneous in many important factors 
(population density, age demographics, and vaccination 
rate). Models tailored to individual localities are necessary 
to facilitate local level health action. In this research, a novel 
agent-based disease model was created using NetLogo to 
simulate localized COVID-19 disease dynamics. Individual 
agents represent each member of a population, and their 
individual traits (vaccination status, age, etc.) conform to 
the model input (vaccination rate, age distribution, etc.). 
Interactions between these agents produce the model 
outputs, which include predicted infections and deaths. The 
model was validated using data from state and local health 
agencies for Westchester County, NY (84.2% accuracy). 
Using the model, this research aims to answer the following 
question: what local factors affect COVID-19 outbreak 
severity and intervention impact? To accomplish this, a 
sensitivity analysis was conducted for three local variables 
(vaccination rate, age distribution, intervention applied) 
and a comparison of locality simulation was conducted for 
four different U.S. counties. From the results attained, this 
research concluded that vaccination rate, age distribution, 
and intervention applied in a locality all contribute 
significantly to risk level differences between localities, and 
that higher risk localities are impacted harder by 
interventions than those with lower risk. Localities can use 
this model to make health related decisions, and a website 
(www.localcovidmodel.org) has been created for model 
access. 
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1. Introduction 
1.1. COVID-19 and Public Health 

COVID-19, caused by the emerging virus SARS-
CoV-2, has caused a dangerous pandemic that infected 
hundreds of millions globally [1]. Non-pharmaceutical 
interventions have been some of the most important 
and effective strategies in use during the pandemic; it 
is shown that countries which act early to institute 
these interventions see far fewer cases and deaths 
than those who do not [5]. However, many 
interventions were prematurely lifted because of 
uninformed decision making [7], resulting in 
pandemic resurgences despite efforts to stop its 
spread.  

Disease modeling can be used to predict the 
future outcome of a disease outbreak [3][6]. These 
predictions can be helpful for organizations such as 
the CDC to create health guidelines and interventions 
to control the pandemic. 

 
1.2. Current Modeling Applications 

Currently, much disease modelling for COVID-
19 is done on the nation-wide and state-wide level [1]. 
Though these forecasts are helpful for national and 
state guidelines, the data produced by these models 
are not tailored specifically to cities, towns, school 
districts, or counties, often forcing such localities to 
follow one-size-fits-all guidelines from the state.  

http://www.localcovidmodel.org/
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The age and vaccination status of an individual 
plays a major role in their susceptibility and 
transmissibility [2][16]. Thus, the age distribution and 

vaccination rate of a population will influence the risk-
level of a community to COVID-19. As a result, each 
community will vary in their needs for protection. 

 
1.3. Compartmental Disease Modelling 

Compartmental disease models use differential 
equations to describe the movement of people 
between compartments (e.g., susceptible or infected). 
Because of this, most compartmental models do not 
recognize each person as an individual, and instead 
assumes a homogeneous population where all 
members transmit disease equally [9][11]. This may 
lead to inaccuracy, as disease spread is inherently 
heterogeneous, meaning that some will be more 
infectious than others [7]. These differences in spread 
may result from differences social interaction rates 
[4]. Since heterogeneity is more prevalent in small 
populations, it is difficult to capture certain local 
differences with standard compartmental models.  

 
1.4. Agent-Based Disease Modeling 

An agent-based model is a type of disease model 
that represents each individual person in real life as an 
agent. Agents are guided by simple and programmable 
instructions and can interact with each other by 
movement and contact or by forming a social network 
[18]. Agents are often assigned unique parameters 
such as age [18]. Unlike compartmental models, the 
individuality of agents represented by this type of 
model makes it ideal for simulating disease 
heterogeneity and small-scale social interactions 
(Gomez et al., 2020). Agent-based models are the 
preferable model for the purposes of this research.  

NetLogo is a programming language and IDE 
specifically used to develop agent-based models. 
Several previous studies have been done on disease 
models developed using NetLogo, including a 
simulation of COVID-19 spread in Piedmont, Italy [10], 
a simulation of COVID-19 spread in refugee camps [9], 
and a simulation of COVID-19 based on the effects of 
different sized social gatherings [8]. Although the 
above models created using NetLogo have explored 
localized simulation, the models are programmed on 
an ad hoc basis, only simulating the original locality it 
was created in. A localized disease model that tailors 
its results to different localities given user input is 
needed in order to function as a decision-making tool 
for local administrations. 

 

1.5. Research Goals 
A novel agent-based disease model was 

developed using NetLogo to simulate how COVID-19 
spreads in a locality. This model simulates three 
different interventions: mask mandate, testing and 
isolating, and lockdown. By using the population size, 
population density, vaccination rate, and age 
demographics of the locality as an input, the model can 
produce different results for each locality that are 
tailored to its population and predict which 
interventions are most appropriate or effective for 
that region. Using the model, this research will answer 
the following question: what local factors affect 
COVID-19 outbreak severity and how does the impact 
of interventions differ from locality to locality? 

 

2. Methods 
2.1. Model Development 

This model was built using the agent-based 
modelling software NetLogo [17], which consists of 
mobile agents (representing humans in this model) 
that move and interact on a gridded canvas separated 
into square patches.  

The user of this model can specify the 
population size, area, initial infected agents, 
vaccination rate, age demographics (ratio of young to 
adults to elderly), variant (Alpha, Delta, Omicron), 
intervention used (mask mandate, testing and 
isolation, lockdown), and compliance rate to such 
interventions. As the simulation starts, agents are 
randomly selected to be young (age 0-20), adult (age 
21-59), elderly (age 60+), vaccinated, or unvaccinated 
based on the specified age demographics and 
vaccination rate (assuming same chance of 
vaccination in each age group) and are randomly 
chosen to show compliance based on the compliance 
rate. 

During a simulation, the agents move in the 
direction they are facing and turn a random amount 
between zero and fifty degrees each day and will 
interact with other agents that are on its patch, having 
a chance to infect other agents or become infected. The 
simulation ends when no more agents are infected. 
The simulation records the cases over time, deaths 
over time, total cases, and total deaths. Fig. 1 shows 
the model and the NetLogo interface. 
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Each agent can go through seven stages of 
infection: susceptible, exposed (infectious but 
asymptomatic), infected (symptomatic), quarantined, 
recovered, and dead. When a susceptible agent 
interacts with an exposed or infected agent, they have 
a chance of entering the exposed state (Table 1). After 
passing through their incubation period, agents 
become infected. Agents stay infected during their 
recovery time, before either recovering or dying, 
based on the mortality rate. Recovered agents cannot 
become re-infected. Fig. 2 shows how the agents move 
between states. 

This model can simulate three different non-
pharmaceutical interventions: mask mandate (cloth 

mask), test and isolate, and lockdown. It is assumed 
that 75% of agents will comply [13]. To simulate a 
mask mandate, the infection chance of all complying 
agents will be reduced by 50% [18]. To simulate 
widespread testing, infected and symptomatic 
individuals who show compliance will be moved to the 
quarantined state, reducing their movement and 
interaction with other agents. To simulate a lockdown, 
agents showing compliance will group up into clusters 
of three or more then all become quarantined. The 
model was parameterized using published literature 
on COVID-19 patient outcomes (Table 1). 

 

 
Table 1: The six constants used to parameterize the model and their values, some of which differ by age 

Parameter Description Value Source 

Susceptibility 
The likelihood that an individual 
shows symptom after contact with an 
infected individual 

Age 0-20: 39% 
Age 21-59: 81% 
Age 60+: 81% 

[2] 

Mortality Rate 
The likelihood that an individual 
shows a fatal outcome during their 
infection 

Age 0-20: 0.1% 
Age 21-59: 1.4% 
Age 60+: 26.4% 

[12] 
 

Recovery Time 
The time it takes for an infection to 
cease after symptoms arise 

Age 0-20: 13.4 days 
Age 21-59: 14.4 days 
Age 60+: 14.7 days 

[16] 
 

Incubation Period 
The time it takes for symptoms to 
start after the individual is infected 

Age 0-20: 5.0 days 
Age 21-59: 5.8 days 
Age 60+: 7.6 days 

[14] 
 

Mask Effectiveness 
The rate at which a mask reduces 
infectiousness (cloth mask) 

50% [19] 

Compliance Rate 
The proportion of the population that 
comply with intervention.  

75% [13] 

2.3. Procedures 
2.3.1 Model Validation Test 

First, the model was validated against real case 
data from Westchester County, NY [15]. The test 
consisted of 20 simulations of a 150-day period from 
9/1/20 to 1/28/21. The population size, population 

density, number of agents exposed or infected on 
9/1/20, and age demographics of Westchester County 
were used as inputs to the model. During the 
simulation, masks and testing were mandated (75% 
compliance rate assumed) to reflect the policies in 
New York State at the time. The results from the 
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simulations were compared to the real case data from 
the time period and graphed using the statistical 
programming language R [20]. The overall accuracy 
for the model validation was computed averaging the 
percent errors between real and simulated cases of all 
150 days and subtracting that value from 1. 

 
2.3.2 Sensitivity Analysis 

A sensitivity analysis was conducted on the 
proportion of population aged <20, proportion of 
population aged >60, vaccinations, boosters, and 
intervention used, with controls shown in (Table 2). 
In the tests with the percent elderly and percent 
young, 5 trials were conducted at each 10% interval. 
For each intervention scenario, 20 trials were 
conducted. 

 
2.3.3 Comparison of Localities 

Disease dynamics in four U.S. counties were 
compared using the model. To ensure a meaningful 
comparison, one county was chosen from each 
category of median age and vaccination rate (high 
age/low vaccinations, low age/high vaccinations,  
etc.). Data about the age demographics of each county 
were collected from the U.S. Census Bureau, and data 
about the vaccination rate of each county were 
collected from https://covidactnow.org/ (Table 3). In 
each simulation, a 500-agent sample was used to keep 
the population size constant across localities and a 
compliance rate to interventions of 75% was assumed. 
To observe the effects of interventions in each locality, 
masking, testing, and lockdowns were simulated. 

 
2.4. Data Analysis 

The data was graphed using the statistical 
programming language R [20]. In the sensitivity 
analysis, a regression analysis was performed to 
determine if the age distribution had a significant 

effect on infections and deaths. In addition, an ANOVA 
test was performed to determine if infections and 
deaths differed significantly among the three 
interventions simulated. A Bonferroni Correction 
post-hoc test was then conducted to find which 
interventions drove this difference. 
 

Table 2:  Control variables for each part of sensitivity 
analysis. 

Variable Controls 

Percent Elderly (Age 

>60)  

no intervention 

Population Size: 500 

Vaccination Rate: 40% 

Compliance Rate: 75% 

Percent Young (Age 

<20) 

no intervention 

Population Size: 500 

Vaccination Rate: 40% 

Compliance Rate: 75% 

Vaccinations/Boosters Population Size: 500,  

Percent Young: 20% 

Percent Elderly: 20% 

Intervention Used Population Size: 500,  

Percent Yng/Eld: 20% 

Vaccination Rate: 0% 

Compliance Rate: 75% 

 
Table 3: Locality specific parameters for each county as of 

7/14/21. 

County 
Percent 
Aged 0-
20 

Percent 
Aged 21-
59 

Percent 
Aged 60+ 

Percent 
Vaccinated 

Monterey, 
CA 

 29  52  19  54 

Levy, FL  21  45  34  32 

Hunterdon, 
NJ 

            22             51             27              54 

Coles, IL             24             54             22             33 

3. Results 
3.1. Model Validation Test 

The model validation test showed that the real 
Westchester County case data was almost always 
within the range of the simulated data as shown in Fig. 
3. The model tended to overpredict by a minor amount 
near the beginning of the simulation, which resolved 
as the simulation progressed (Fig. 4). The average 

error increased as the simulation progressed, which 
can be attributed to the increasing overall case 
numbers seen later in the outbreak. The overall 
accuracy for the model was 84.2%, calculated as the 
correspondence between the mean of the simulations 
and the real data.  
 

https://covidactnow.org/
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3.2. Sensitivity Analysis 
The results from the sensitivity analysis show 

that increasing the percentage of elderly in a 
population also increased the total infections and 
deaths, in effect making the outbreak more dangerous 
(Fig. 5). Each 1% increase in elderly subpopulation 
resulted in an average increase of 0.408 (P<0.05) total 
deaths and 0.249 (P<0.05) total infections (Table 4).  

 

The change in elderly population has a much 
stronger effect on the deaths than the infections with 
an r2 value of 0.8827 for deaths and an r2 value of only 
0.1161 for infections. Overall, a population with a 
higher elderly subpopulation can be much more 
susceptible to increased infections and deaths from a 
COVID-19 outbreak.  

 

 
However, the sensitivity analysis showed that 

the effect of increasing the young subpopulation had a 
drastically different effect on disease dynamics (Fig. 
6). For each percent increase in young population, the 
total infections decrease by 1.104 (P<0.05) and the 
total deaths decrease by 0.0151 (P<0.05) (Table 5). 
Unlike the elderly subpopulation, the young 

subpopulation had a stronger effect on the infections 
(r2=0.7256) rather than deaths (r2=0.2681), and a 
more significant effect with a lower p value for 
infections. Overall, an increase in the young 
subpopulation tends to make a population less 
susceptible to both infections and deaths from a 
COVID-19 outbreak.  
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The sensitivity analysis for vaccination rate (2-

dose full vaccination) was conducted for all three 
variants, allowing the different responses of each 
variant to be compared. Increasing the vaccination 
rate of a population decreases cases for all variants, 
however, Omicron produced the most cases and 
received the least initial reduction of cases from 
vaccinations (Figure 11). Vaccinations were effective 
in reducing deaths, and interestingly, all variants had 
similar levels of death after reaching ~25% of the 
population vaccinated. Omicron had by far the highest 
levels of breakthrough infections which seemed to 
peak at ~60% vaccination rate due to higher 
proportions of cases attributed to breakthroughs and 
decrease approaching 100% vaccination rate due to 
fewer total cases.  

 

 Figure 11: The relationship between the percent with 2-dose 
vaccinations and the infections, deaths, and breakthroughs. 

Data was collected for each variant (Alpha, Delta, Omicron).  

 
Compared to increasing 2-dose vaccinations in an 
unvaccinated population, increasing the rate of the 
third dose (booster) vaccinations in the 2-dose 
vaccinated population creates a weaker effect on cases 
and little effect on deaths (Figure 12). Nevertheless, 
increasing boosters affected the Omicron variant the 
most, likely because of the larger increase in 
vaccination effectiveness for that variant. Omicron 
variant breakthroughs are reduced effectively.  

 Figure 12: The relationship between the proportion of the total 

vaccinated population having 3-dose vaccinations and infections, 
deaths, and breakthroughs. 

 
Focusing on three intervention scenarios, Fig. 

7 shows that lockdowns decrease both cases and 

deaths the most, followed by masking and testing 

respectively. In the absence of both vaccination and 

interventions, a substantial proportion (~73%) of the 

population became infected, showing the necessity 

of interventions to control the epidemic. According 

to an ANOVA test, the means of the four groups 

differed significantly (P=1.0356x10-30 for 
infections, P=1.2666x10-17 for deaths). A 
Bonferroni Correction post-hoc test with an alpha 
level of 0.0125 (due to 4 scenarios being present) 
reveals that the significant difference is mostly 
between the absence and presence of 
intervention (P<0.0125 between no intervention 
and every intervention); thus, all interventions – 
even though they differ in strength – are effective 
and can significantly reduce outbreak severity. 
There was a smaller difference between 
lockdown and masking (P<0.0125) but no 
significant difference between masking and 
testing (P>0.0125), showing that some 
interventions are more effective than others 
(Table 7) 
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3.3. Locality Comparison 

First, 100 simulations were performed for two 

localities – Monterey, CA and Levy, FL – without 
interventions. From this data, the population based on 
Levy County showed significantly higher disease 
spread than that of Monterey County. Fig. 8 shows 
that Levy demonstrated higher mean infection peak 

than Monterey, as well as a later infection peak. While 
the simulated infections in Monterey decreased, the 
simulated infections in Levy continued to increase, 
resulting in longer outbreaks overall. Levy also 
demonstrates a higher rate of death than Monterey, 
continuing to increase rapidly after the death increase 
in Monterey seemed to plateau (Fig. 9). This may be 
attributed to Levy’s larger elderly subpopulation.
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Next, outbreaks from all locations were simulated 
with the addition of the three intervention strategies 
discussed earlier: mask mandate, test and isolate, and 
lockdown, where it is assumed that 75% of agents will 
comply to each intervention. Each combination of 
intervention in each county was simulated 50 times; the 
simulated data is shown in Fig. 10. In all scenarios, 
counties with higher age and lower vaccinations had a 
more severe epidemic. However, the 95% central 
tendencies for both case and death count per county 
overlapped more often when interventions were added 
(Fig. 10). This observation shows that the risk level of 
the counties differed less with interventions than 
without, showing that interventions have a greater 
impact where the COVID-19 spread is more severe.  
 

4. Discussion 
4.1. Conclusion  

In this research, a novel agent-based model was 
created using NetLogo to simulate disease spread within 
local populations, with the ability to tailor simulation to 
a locality based on user input. This model achieved 
82.4% accuracy when validated against Westchester 
County case data. Comparing masking, test-and-isolate, 
and lockdowns, lockdowns were found to be the most 
effective intervention, with masking second and testing 
third. It was found that a higher elderly population, 
lower young population, lower vaccination rate, and 
weaker interventions were driving factors that cause 
some localities to have more dangerous COVID-19 
outbreaks. The comparison of localities showed that 
interventions tend to have a higher impact in high-risk 
localities. he effects of age demographics on disease 
spread can likely be attributed to the differences in 
susceptibility, mortality rate, recovery time, and 
incubation time between age groups (Table 1). For 

example, susceptibility had the greatest difference from 
young to adult (42%), while mortality rate had the 
greatest difference from adult to elderly (25%). This was 
a major contributing factor to the effects of young and 
elderly population on disease dynamics and could 
explain why altering the young population had a greater 
effect on infections while altering the elderly population 
had a greater effect on deaths. Because interventions 
such as mask mandates, testing, and lockdowns differ in 
strength and localities differ in their population-based 
risk level, it may be beneficial for different localities to 
implement different levels of intervention based on their 
risk level. Through choosing the intervention most 
appropriate to its population, a locality can both 
maximize the effect of the intervention and minimize its 
socioeconomic cost. 

 
4.2. Applications 

This model can be used by local public health 
administrators as a tool to make COVID-19 related public 
health decisions. The novelty of this model stems from 
its ability to allow local health administrators to generate 
locality-specific data, instead of relying on state or 
country recommendations/guidelines to do so. While 
this model was parameterized for COVID-19 in this 
research, the model can be applied to many other 
infectious diseases such as influenza through changing 
the constants (Table 1) to that of other diseases. A 
website (www.localcovidmodel.org) has been created 
for model access. 

 
4.3. Limitations and Future Work 

One limitation to this research is that this model 
was built to simulate the original COVID-19 variant, 
which may be less infectious and more deadly than 
current variants, such as omicron, or future COVID-19 
variants. Variants may also be more likely to cause 

http://www.localcovidmodel.org/
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breakthrough cases and reduce overall vaccine 
effectiveness. This may cause the model to underpredict 
cases and overpredict deaths if compared to more recent 
data where variants are more prevalent. In a future 
version of this model, the age-specific constants (Table 
1) could be changed to simulate new variants. Future 
work could be done to explore how different variants 
affect disease dynamics if different actions should be 
taken based on the variant identified. 

This model also assumes that individuals who are 

recovered cannot become re-infected, which may not 

always be true. If re-infection occurs in a population, 

an outbreak may last longer or cause resurgence. One 

way to address this issue is to convert recovered agents 

back to the susceptible state after a specified period of 

time. However, the effects this could have on a 

localized simulation is relatively limited, as the 

population size is smaller, and outbreaks typically end 

before agents would be eligible for re-infection. This 

may be a greater concern for a simulation with a larger, 

interconnected population. 
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