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Abstract - Sleep apnea is a common respiratory disorder during 
sleep. It is characterized by shallow or no breathing during sleep 
for at least 10 seconds. Decrease in sleep quality may effect the 
next day daily routine unfavorably. In some cases apnea period 
(not breathing interval) can last more than 30 seconds causing 
fatal outcomes. 14% of men and 5% of women suffer from 
Obstructive Sleep Apnea (OSA) in United States. Patients may 
face apnea for more than 300 times in a single overnight sleep. 
Polysomnography (PSG) is a multi-parametric recording of 
biophysiological changes, having Snorring, SpO2, Nasal Airflow 
EEG, EMG, ECG signals, performed in sleep study laboratories. In 
this study, a fully automatic apnea detection algorithm is 
mentinoed and an early warning system is proposed to predict 
OSA episodes by extracting time-series features of pre-OSA 
periods and regular respiration using nasal airflow signal. 
Extracted features are then reduced by RANSAC and entropy 
based approaches to improve the performance of prediction 
algorithm. Support vector machines (SVM), one of the commonly 
used classification algorithms in medical applications, k-
Nearest Neighbor and a modified Linear Regression are 
implemented for learning and classification of nasal airflow 
signal episodes. The results show that OSA episodes are 
predicted with 86.9% of accuracy and 91.5% of sensitivity, 30 
seconds before patient faces apnea. By the use of predicting an 
apnea episode before happening, it is possible to prevent patient 
to face apnea by early warning which can minimize the possible 
health risks. 

Keywords: Obstructive sleep apnea (OSA), prediction of 
OSA episodes, nasal airflow signal, support vector 
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1. Introduction
Sleep apnea (SA) is generally expressed as not 

breathing for at least 10 seconds during the sleep. It is an 
under-diagnosed sleep disorder and is a fatal risk factor. 
SA is associated with high risks of hypertension, stroke 
and also with increased mortality rates [1]. 
Approximately 14% of men and 5% of woman in United 
States are suffering from OSA syndrome and incidence 
rate is increasing worldwide [2]. Hypopnea can be 
defined as 50% decrease in airflow accompanied by 4% 
oxygen desaturation for at least 10 seconds during the 
sleep. In a sleep study, the severity level of OSA is 
measured by the number of apnea and hypopnea events 
per hour during sleep; known as the apnea-hypopnea 
index (AHI). A subject having clinical symptoms such as 
excess daytime sleepiness and impaired cognition in 
addition to AHI greater than 5, is diagnosed as an OSA 
patient [3]. AHI is usually calculated through overnight 
polysomnography (PSG) recorded from suspected OSA 
patients, in sleep study laboratories. Overnight 
polysomnography (PSG) is the gold standard method for 
diagnosis of OSA [4]. PSG requires recordings and 
monitoring of multi-parameter biophysiological signals, 
including EEG, ECG, respiratory effort, nasal airflow and 
oxygen saturation (SpO2). These recorded signals are 
then analyzed by sleep specialists for final diagnosis of 
the apnea syndrome. SA is generally characterized by 
pauses in breathing or shallow breathing when the soft 
tissue in the rear of the throat collapses and closes 
during whole night sleep [5]. A slow respiratory rate 
caused by the blockage in the airway, results with less 
supply of oxygen delivered from the lungs to heart and 
body. Without breathing (or shallow breathing), CO2 

level in the blood begins to elevate and the patient tries 
to wake up feeling a choke. There are two commonly 
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faced types for apnea: Obstructive sleep apnea (OSA) and 
Cental sleep apnea (CSA). In OSA, the airflow through 
nose stalls for a period of time and but the brain 
struggles with the body to breath. Snoring, having 
trouble getting up in the morning, depression, headaches 
in the morning and night sweats may be given as 
symptoms for OSA. In CSA case, brain is not able to send 
stimulus to muscular system to resume breathing. 
Compared to the OSA, snoring is generally not observed 
with central sleep apnea. Being very tired during the day, 
having too much headaches and repeatedly waking up 
during the night are the general symptoms for CSA. 
There are two devices to overcome apnea syndrome: 
continuous positive airway pressure (CPAP) and bilevel 
positive airway pressure (BiPAP). Both devices provide 
positive airway pressure and contribute to the patient to 
get more air in and out of the lungs. However, the main 
difference among them is BiPAP applies higher 
pressures during inspiration than expiration [6]. 
 There are many studies to detect apnea episodes 
using PSG recordings. Some of them focus on using ECG 
signals to detect OSA [7,8]. SA is defined as not or shallow 
breathing during sleep, for this reason it is more accurate 
to predict apnea by nasal airflow signal. Han et al. 
proposed a method to detect apneic events based on 
second derivatives of the respiratory signal [9]. In 
another study, Yadollahi and Moussavi developed a fully 
automatic acoustic method to detect apnea and 
hypopnea events [10]. Only tracheal breathing sounds 
and blood oxygen saturation level are used in the 
proposed method and results with high sensitivity and 
specificity are obtained. Kim et al. proposed a novel R 
wave detection algorithm to analyse the heart rate 
variability (HRV) of obstructive sleep apnea patients 
[11]. As a measure of apnea classification accuracy, the 
method correctly classified 99.7% of the evaluation 
database. Some other recent works have focused on 
apnea syndrome diagnosis, by using nonlinear measures 
of airflow signal [12]. In this study, an early warning 
system is proposed to predict OSA episodes 30 seconds 
earlier by extracting time-series features of OSA periods 
and regular respiration. A device that records the nasal 
airflow signal of the patient throughout the night and 
runs the proposed algorithm may be a useful approach 
for urgent pre-intervention. In this wise, it will be 
possible to warn the patient before apnea episodes even 
occur. 
 
 
 

2. Fully Automatic Sleep Apnea Detection 
 Sleep apnea is the syndrome of pause in breathing 
during sleep longer than 10 seconds. Our data set has 
nasal respiratory airflow signals of 13 patients sampled 
at 32 Hz for an overnight sleep recorded at a sleep study 
laboratory in hospital. Each of these recordings has 
duration around 7-8 hours. Nasal airflow signal is first 
divided into 40 seconds segments (epochs). Every 40-
second signal is evaluated independently in terms of 
energy by using Teager Energy Operator. Epochs 
containing potential apnea episodes are determined by 
changes in the energy level. Then, first order derivative 
approach is applied to the nasal airflow signal episodes, 
previously labelled as potential apnea candidate. This 
approach ensures to determine apnea episode beginning 
precisely. Figure 1 shows the general schematics of the 
apnea detection algorithm used in this study.  

 

 
Figure 1. Block diagram of sleep apnea detection. 

 
2.1. Nasal Airflow Signal Data 
 Nasal airflow data is recorded in sleep laboratories 
belongs to 13 patients of an overnight sleep. Recordings 
have 7-8 hours of sleep data and airflow signal is 
sampled at 32 Hz. All of the nasal airflow signal data of 
all patients are given as an input to the algorithm. A 7-8 
hour long signal is first divided into 40-second long 
epochs to visualize and analyse easier. Each patient data 
will have around 650 independent epochs each lasts 40 
seconds.  
  
2.2. Windowing 
 It is difficult to detect not only a 10-second apnea 
episode using an 8-hour nasal airflow signal, but also 
visualize in shorter intervals. For this reason we divided 
the nasal airflow signal into 40-second epochs. Each 
epoch is analyzed independently. The purpose of this 
independent calculation is to minimize the effects of 
incorrect samples caused by possible movement of the 
patient or the transducer dislocation during the sleep. 
Then every epoch is divided into two distinct 20 second 
parts (first half and second half) and the energy of each 
segment is calculated by Teager Energy Operator. 
 

𝜑(𝑛) = 𝑥(𝑛)𝟐 − 𝑥(𝑛 + 1)𝑥(𝑛 − 1) (1) 
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 The energy levels of the two 20 second long signals 
are compared with respect to total energy of the epoch, 
whether the ratio of average energies is < 0.25 (or > 4) 
or not. The segments that have less than one quarter of 
average energy than the average energy of the epoch are 
marked as potential apnea episodes. Two potential 
apnea candidate segments are shown in Figure 2 and 
Figure 3 is an output of the detection algorithm. It can be 
easily seen that in Figure 2 the patient could not breathe 
for longer than 10 seconds. On the other hand, 
mislabelled epoch is detected as potential apnea episode 
in Figure 3, where there is actually no problem in 
respiration. 
 

 
Figure 2. Output of windowing algorithm for an epoch 

labelled as apnea candidate. 

 
 In Figure 2, there happens a pause, up to almost 13 
seconds on breathing during the second half of the 
epoch. On the other hand, the total energy of the epoch is 
four times greater than the energy of one of the 20-
second segments.    
 

 
Figure 3. Output of windowing algorithm for an epoch 

labelled possibly incorrectly as apnea candidate. 

  
 In Figure 3, the epoch is detected as apnea 
candidate as there happens four times energy difference 
between the   20-second segments and the total energy 
of the epoch. It can be seen that there does not occur any 

apnea syndrome during the epoch. In order to eliminate 
the mislabelled regions, first order derivative is applied 
for the next step.  
 
2.3. First Order Derivative Approach 
 The aim of first order derivative approach is to 
eliminate mislabelled epochs like in Figure 2.b. In this 
part, the derivatives of the epochs are calculated. The 
first order derivative of every 8-sample interval (0.25 
seconds for sampling frequency of 32 Hz) is obtained 
(Figure 4) and compared with a designated threshold 
value. If the interval length for the derivation is chosen 
longer, the error in detected apnea beginning precisely 
increases. Obviously, smaller values may cause other 
inaccuracies in calculation; considering that nasal 
airflow signal is not highly deviating. The samples below 
the threshold value are marked (Figure 5) and they are 
checked whether there is a segment, composed of 
consecutive samples, that lasts longer than 10 seconds. If 
not, these samples are removed from the list of the 
potential apnea episodes. Moreover, the outputs for the 
epochs which are labelled incorrectly (like an example in 
Figure 3) will also be eliminated because of not 
containing any 10-second long apnea episodes. In this 
manner, small deviation values which exist for longer 
than 10 seconds are detected as apnea event and the 
initial sample value (marked value) for every apnea 
periods in the whole signal is stored by examining every 
potential apnea epochs (Figure 6). 
 

 
Figure 4. Results for the first order derivative of a potential 

apnea epoch. 
 

 
Figure 5. Marked samples after 1st order derivative applied to 

the nasal airflow signal. 
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Figure 6. Initial sample of the apnea period is marked after 

apnea detection. 

 
 The output of the first order derivative approach is 
a single sample value that determines and marks the 
beginning of the sleep apnea episode. It does not include 
any other data about the duration of the apnea and it will 
only be used for distinguishing a time interval labelled as 
pre-apnea.  
 After the apnea detection process is accomplished, 
regular breathing intervals are detected by using similar 
approach. An example of automatically detected regular 
air flow (regular breathing) is shown as an example in 
Figure 7. 
 

 
Figure 7. Regular breathing in the airflow signal. 

 
 In the algorithm at the end of this section, OSA 
segments are automatically detected by the developed 
algorithm and beginning time of these segments are also 
marked automatically. 347 apnea episodes are detected 
by analysing all of the nasal airflow signal data of 13 
patients. Then regular breathing segments are selected 
from the remaining respiration signal where OSA 
segments labelled as “pre-apnea” are removed from the 
original recording. Labelled OSA and regular breathing 
segments will be used as training inputs to learning 
algorithm. 347 regular breathing episodes are extracted 
to avoid any positive or negative bias in prediction 
(learning) section. If the number of selected regular 
breathing episodes is comparably less than the number 

of pre-apnea segments, learning algorithms will tend to 
give the output with “apnea bias”. In a case where there 
are 300 pre-apnea and 100 regular breathing training 
samples, there may be 75% accuracy, by just labelling all 
test samples as “pre-apnea”. To avoid this situation, 
training and test data set will be selected as containing 
50% pre-apnea episodes and 50% regular breathing 
episodes.  With the help of learning algorithms, 
discussed in the following chapters, the system will be 
able to predict whether a new signal has an OSA warning 
or not. As Figure 8 indicates there is not much difference 
in nasal airflow signals in the means of breathing period 
or amplitude. Both pre-apne and regular breathing 
intervals appear similar. 
 

 
(a) 

 
(b) 

Figure 8. (a) Regular breathing segment (b) Pre-apnea 
segment, extracted to be used as training data for prediction. 

 

3. Prediction Algorithm 
There are two different classes of input, used for 

prediction: Pre-apnea and regular breathing. Pre-apnea 
interval is a 1 minute nasal airflow signal which begins 
90 seconds before apnea occurs. The beginnings of apnea 
segments, automatically marked by apnea detection 
algorithm, are used to extract the pre-apnea interval. By 
this way, pre-apnea and apnea segments are 
disaggregated from each other by 30 seconds margin to 
minimize the pre-effects of apnea. Similarly, 1 minute 
signal intervals are extracted starting 90 seconds prior 
to healthy respiration, representing regular breathing. 
All of the regular breathing intervals, having shallow 
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breathing for at most 2 seconds, are detected and 
sufficient number of these intervals are chosen randomly 
to be processed. By this way, it is intended to predict a 
possible apnea episode and alert before patient faces 
OSA, by having significant amount of time for processing. 
Time-series features of both classes are calculated and 
given as input features to learning algorithms. 347 pre-
apnea intervals are extracted for each of 347 marked 
apnea segments. In order to decrease possible bias in the 
classification process, 347 regular breathing intervals 
are selected randomly, having a total of 694 input 
signals. Pre-apnea and regular breathing intervals are 
obtained from 13 patients to eliminate any personal 
effects among individuals.  

 
3.1. Features 
 In this study only time-series features are 
considered and used. Most popular features like mean, 
variance, minimum, maximum, median values of signals 
are used not only for the original signal but also 
implemented for the power and derivative of the signal. 
In addition to these 15 features; minimum, maximum, 
average inspiration/expiration amplitudes and 
durations of nasal airflow signal are also extracted for 
each of 694 signal intervals (pre-apnea and regular 
breathing). As a result, a total of 39 features are extracted 
to be used in classification. 

 
3.2. Support Vector Machines (SVM) 

In this study, first implemented classification 
algorithm is Support Vector Machines (SVM). SVM is a 
popular and widely used classification algorithm in 
biomedical studies [13]. SVM basically seperates two 
different classes of inputs each represented in multi 
dimensional feature space by generating a boundary 
function. In SVM algorithm, the inputs are given as 
(x1,y1), ... , (xi,yi), x ε Rf (f: number of features) , yi  {0,1} 
(class numbers) and SVM will output a boundary plane 
seperating each class with the greatest margin. The 
output boundary plane of the SVM will be as follows:  
 

𝐹(𝑥) = 𝑤𝑇 . 𝑥 + 𝑏 (2) 

 
where w is the normal of the boundary plane 

seperating two classes, b is bias. 
For the representation of different classes, regular 

breathing episodes are labelled as ‘0’, as not an apnea 
episode, and pre-apnea episodes are labelled as ‘1’, as an 
apnea episode. SVM algorithm is implemented by using 

the machine learning tool-box of MATLAB software. 
Default parameters and kernels of SVM toolbox of 
MATLAB are used for the implementation. Figure 9 
shows the general idea behind SVM classification 
algoithm. 

                                                             

 
Figure 9. Classification principle of Support Vector Machines 

(SVM) [14]. 

 
3.3. k-Nearest Neighbors (kNN) 

For the 2nd classification algorithm k-Nearest 
Neighbors (kNN) is used. kNN simply measures the 
distance of an input  to all of the training dataset points 
in multi dimensional feature space. Then, the test input 
will be labelled as the class of the closest training point 
to itself. This approach is known as kNN-1. In another 
versions of kNN, defined as kNN-t (such as kNN-3, kNN-
5 etc.), the closest t points to the test sample are detected 
and then a voting mechanism decides the class of the 
input. Consider a test sample that we would like to 
predict whether it is a pre-apnea segment. If two out of 
three closest points to the test sample belong to pre-
apnea class, then this test input will be assigned to pre-
apnea class as a result of 2-1 voting. In figure 10, an 
example of kNN-5 is given. For a new test input given to 
the system, closest 5 points are determined. 4 out of 
these closest 5 points belong to class w1 and the 
remaining data point is in class w3. The output of the 
system will be class w1 as a result of 4-1 voting. 

 

 
Figure 10. kNN algorithm voting [15]. 
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3.4. Linear Regression Approach for Classification 
(LR) 

Linear Regression (LR) basically is a regression 
algorithm where the output is a real number, not a class. 
In this study, we approach this classification problem as 
regression. Similar to SVM learning, in training set pre-
apnea episodes are labelled as ‘1’ and regular breathing 
will be ‘0’. LR output will be a real number not only 0 or 
1. In order to assign the test sample to a class, we should 
decide a level, call it l. The output higher than l value will 
be labelled as ‘1’, and if the output is lower than l, then it 
will be assigned to class ‘0’. 

 
3.5. Feature Reduction by RANSAC  
 Selected 39 features are used for classification of a 
signal interval as pre-apnea or not. However, it is 
possible to decrease the dimension of the feature space 
and improve the classification accuracy by eliminating 
some of the irrelevant features. For this purpose, 
Randomly Select and Compute (RANSAC) algorithm is 
used. First, the accuracy of the classification is calculated 
by using all 39 features. Results are shown in Results & 
Discussion section. Then, 35 features out of 39 are 
randomly selected and accuracy is calculated using these 
35 features. RANSAC algorithm is implemented for 1000 
repetitions and features are noted having highest 
accuracy in classification. Similar feature reduction 
algorithm is computed for 30, 25, 20 features. Results 
suggest that randomly selected 30 features have the best 
performance in prediction of OSA episodes and further 
reduction of features also diminishes the performance. 
Feature reduction and classification algorithm is as 
follows: 

 
 Choose number of features (Repeat for n=35,30,25 
and 20) randomly select n features (Repeat for 1000 
times) 

 train and classify by selected learning algorithm 
 record features giving highest accuracy in 

selected learning algorithm 
 5-fold cross validation for accuracy, sensitivity, 

specificity 
 

3.6. Entropy Based Feature Reduction  
 Entropy is used as a different measure to reduce 
feature numbers in learning process. Entropy is a 
probability measure in log scale representing total 
probability of all labels, in this study “1” or “0”. The 
entropy equation is given as follows: 

 

𝐻 = − ∑ 𝑝𝑖(𝑙𝑜𝑔2𝑝𝑖)

𝑖

 (3) 

 
where p is the probability and i represents the 

classes (pre-apnea or regular breathing). 
The entropy of all 39 features is calculated and the 

features having the lowest entropy values are eliminated 
and not used in training or testing. The calculated values 
of all features are independently normalized and 
mapped to either “0” or “1” by comparing with the mean 
value of the corresponding feature. 

 
3.7. Performance Measures  

Performance measures are calculated using 5-fold 
cross validation. The whole data set is randomly divided 
into two categories: training set, test set. Training set 
contains 80% of the data set, and learning algorithm is 
trained by these input instances. The remaining 20% is 
used for classification and measuring the accuracy, 
sensitivity and specificity of the proposed approach. The 
training process repeated for 5 times and in each 
repetition, a new 80% training set is generated. After 
training and classifying the signals 5 times, the mean 
values are noted as final performance measures. True 
Positive (TP) is that system predicted pre-apnea (‘1’) 
segment as in truth the segment is labelled as pre-apnea. 
True Negative (TN) is that the output of the prediction is 
regular breathing (‘0’ or not pre-apnea), when the 
corresponding episode is actually regular breathing. 
False Positive (FP) is the case that system gives an output 
of pre-apnea episode (‘1’) as it should be regular 
breathing (false alarm) and for False Negative (FN), 
system will decide a segment as regular breathing 
however, the patient is actually about to face apnea in a 
short period of time (miss to warn pre-apnea). Using the 
definitions accuracy, sensitivity and specificity is 
calculated in the results section. Accuracy is the correct 
prediction of a pre-apnea interval (labelled ‘1’) or 
regular breathing interval (labelled ‘0’).  
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (4) 

 
Sensitivity is the correct classification ratio of pre-

apnea intervals (labelled ‘1’) when the corresponding 
episode is actually pre-apnea.  
 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (5) 
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 Similarly specificity is the ratio of correct 
classification of regular breathing intervals (labelled ‘0’) 
if regular breathing episodes are given as input to the 
system. 
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (6) 

 

4. Results & Discussion 
The performance of the proposed prediction 

algorithm is measured in terms of accuracy, sensitivity, 
specificity, accuracy for SVM, kNN & LR. Primarily, 
extracted 39 features are used for learning and 
classification process. 62% of accuracy for SVM is 
recorded which is below accepted levels. Followingly, 
feature reduction approach is used and performance is 
measured for using different features. Table 1 shows the 
performance measures of prediction methods for the 
given parameters. 

 
Table 1. Performance measure of SVM for features reduced 

by RANSAC and Entropy based method. 

SVM with RANSAC - Entropy 
Number of 
Features 

Accuracy Sensitivity Specificity 

39 
0.625-
0.625 

0.884–0.884 
0.546–
0.546 

35 
0.843-
0.783 

0.890-0.811 
0.802-
0.766 

30 
0.869-
0.805 

0.906-0.820 
0.763-
0.788 

25 
0.858-
0.762 

0.915-0.743 
0.720-
0.775 

20 
0.824-
0.772 

0.908-0.818 
0.750-
0.734 

 
Table 2. Performance measure of kNN-3 for features reduced 

by RANSAC and Entropy based method. 

kNN-3 with RANSAC - Entropy 
Number of 
Features 

Accuracy Sensitivity Specificity 

39 0.624-0.646 0.605-0.631 0.647-0.665 

35 0.649-0.688 0.663-0.702 0.630-0.671 

30 0.706-0.724 0.748-0.766 0.682-0.692 

25 0.694-0.686 0.708-0.654 0.683-701 

20 0.710-0.643 0.692-0.665 0.722-0.617 

Table 3. Performance measure of kNN-5 for features reduced 
by RANSAC and Entropy based method. 

kNN-5 RANSAC - Entropy 
Number of 
Features 

Accuracy Sensitivity Specificity 

39 
0.765-
0.780 

0.782-
0.805 

0.744-
0.768 

35 
0.810-
0.832 

0.823-
0.814 

0.800-
0.845 

30 
0.826-
0.810 

0.835-
0.784 

0.813-
0.832 

25 
0.814-
0.776 

0.820-
0.758 

0.796-
0.790 

20 
0.763-
0.724 

0.785-
0.742 

0.757-
0.706 

 
Table 4. Performance measure of LR for threshold l=0.2 for 
features reduced by RANSAC and Entropy based method. 

LR (l=0.2) RANSAC - Entropy 
Number of 
Features 

Accuracy Sensitivity Specificity 

39 
0.706-
0.653 

0.744-
0.688 

0.689-
0.620 

35 
0.723-
0.605 

0.752-
0.586 

0.705-
0.614 

30 
0.756-
0.624 

0.744-
0.645 

0.782-
0.596 

25 
0.695-
0.630 

0.714-
0.646 

0.684-
0.622 

20 
0.712-
0.616 

0.683-
0.597 

0.734-
0.630 

 
 As Table 1 states, for SVM overall performance of 
all parameters shows improvement after a few features 
are reduced. Elimination of unrelated features to the 
apnea prediction, increases prediction accuracy. 
However, further feature reduction has unfavorable 
effect on accuracy and the optimal results are obtained 
for set containing 30 features. Eliminated features are 
analyzed, and it is noticed that following features are 
always discarded in reduction process: 

 
 maximum time between peak of inspiration 

and average value 
 maximum time between peak of expiration and 

average value 
 minimum time between average value and 

peak of expiration 
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 minimum time between average value and 
peak of inspiration 

 ratio of time that respiratory signal is above the 
average value to the time respiratory signal is 
below the average value 

 
We can comment that some of the features 

representing minimum or maximum time recorded for 
inspiration or expiration are generally eliminated in 
feature reduction. Thus, it can be concluded that extreme 
(minimum or maximum time) inspiration & expiration 
durations are not significant to predict OSA. Features 
providing information on general respiratory structure 
like mean values inspiration/expiration or magnitude of 
nasal airflow signal are more crucial and needed to be 
analysed especially. 

SVM has the best prediction performance in 
accuracy, sensitivity, overall and kNN has the highest 
specificity rate. kNN-1 & kNN-7 are also tested for the 
selected features, however accuracy is lower than 0.5 
and results are not added in the table since it does not 
show any significant meaning. 

Results do not show much significant difference 
between two feature reduction methods. Both methods 
may show higher performance depending on the 
features used and the corresponding classification 
algorithms. However, it is noticeable that entropy 
approach fails if the amount of excluded features are 
increased. Therefore, we can comment that eliminating 
features, which have very low entropy, improves the 
classification performance. On the other hand, further 
feature reduction may cause accuracy degradation. 

 
5. Conclusion 

In an overnight sleep, OSA patients may face apnea 
more than 300 times. In addition to decrease in sleep 
quality and inability to maintain resting during sleep, 
OSA can be associated with other disorders like 
hypertension, stroke. It is an underestimated critical 
disorder, which BPAP or CPAP devices are used to 
overcome apnea. CPAP devices might be hard for some 
patients to tolerate at higher pressures. Besides, it may 
not be an influential treatment for people with extreme 
OSA. On the other hand, BPAP devices are more 
appropriate for people originally diagnosed with OSA. 
Having a sleep with these type of devices, discomforts 
the patients for both. To overcome these disadvantages 
of these devices and warn the patient before an apnea 
epsiode, an early warning algorithm that predicts OSA 
episodes is proposed in this study. The accuracy of apnea 

prediction is over 87% with a sensitivity of 91% when 
SVM is used. kNN approach has lowest accuracy but in 
return of highest specificity slightly above 0.8. For LR as 
a classification algorithm method, proper classification 
boundary selection (l value) significantly effects the 
general accuracy however, still it did not present any 
satisfactory results in any of the performance measures. 
76% of specificity value of SVM suggests that there may 
be some cases, the algorithm labels a nasal airflow period 
as pre-apnea where actually it is not. Studies generally 
focus on detecting apnea during sleep to improve the 
performance of BiPAP devices. Also there are some 
studies that researchers try to predict OSA patients in 
diagnosis stage. We approached the OSA problem in a 
different way. The novelty of this study is that findings 
are fundamental to develop an early predicting warning 
system before patient faces an OSA episode. Enhanced 
accuracy, sensitivity, specificity may contribute to the 
development of these devices. Total computational time 
of the algorithm for a single 1 minute nasal airflow signal 
is less than 0.3 seconds. Thus, it may be useful and 
comfortable approach that a device, records the nasal 
airflow signal of the patient throughout the night and 
runs the proposed algorithm in real-time. By this way we 
may be able to warn or wake the patient up before 
his/her respiration fails. In future studies, specificity 
ratio will be tried to be improved. Development of a 
hybrid learning tool, combining the high accuracy, 
sensitivity performance of SVM and high specificity of 
kNN, will significantly improve the prediction of OSA 
segments.  
 

References 
[1]  F. Roche, V. Pichot, E. Sforza, I. Court-Fortune, D. 

Duverney, F. Costes, M. Garet and J.-C. Barthe 
Lemy, "Predicting sleep apnea syndrome from 
heart period: a time-frequency wavelet analysis," 
European Respiratory Journal, vol. 22, pp. 937-942, 
2003.  

[2]  P. E. Peppard, T. Young, J. H. Barnet, M. Palta, E. W. 
Hagen and K. M. Hla, "Increased prevalence of 
sleep-disordered breathing in adults," Am. J. 
Epidemiol., vol. 177, no. 9, pp. 1006-1014, 2013.  

[3]  M. R. Mannarino, F. Di Filippo and M. Pirro, 
"Obstructive sleep apnea syndrome," Eur. J. Intern. 
Med., vol. 23, no. 7, pp. 586-593, 2012.  

[4]  C. A. Kushida, M. R. Littner, T. Morgenthaler, C. A. 
Alessi, D. Bailey, J. J. Coleman, L. Friedman, M. 
Hirshkowitz, S. Kapen, M. Kramer, T. Lee-Chiong, 
D. L. Loube, J. Owens, J. P. Pancer and M. Wise, 



 42 

"Practice parameters for the indications for 
polysomnography and related procedures: an 
update for 2005," Sleep, vol. 28, no. 4, pp. 499-521, 
2005.  

[5]  S. M. C. o. W. N. York, "Obstructive Sleep Apnea," 
2010. [Online]. Available: 
http://www.sleepmedicinecenters.com/SleepDis
orders/ObstructiveSleepAnea. [Accessed 12 May 
2016]. 

[6]  R. Nowak, T. Corbridge and B. Brenner, 
"Noninvasive Ventilation," in Proceedings of the 
American Thoracic Society, 2009.  

[7]  L. Chen, X. Zhang and C. Song, "An Automatic 
Screening Approach for Obstructive Sleep Apnea 
Diagnosis Based on Single-Lead 
Electrocardiogram," IEEE Trans. Autom. Sci. Eng., 
vol. 12, no. 1, pp. 106-115, 2015.  

[8]  T. C. Huang, H. Y. Chen and W. C. Fang, "Real-Time 
Obstructive Sleep Apnea Detection Based on ECG 
Derived Respiration Signal," in IEEE International 
Symposium on Circuits and Systems (ISCAS), 2012.  

[9]  J. Han, H. B. Shin, D. U. Jeong and K. S. Park, 
"Detection of apneic events from single channel 
nasal airflow using 2nd derivative method," 
Comput. Method. And Prog. Biomed., vol. 91, pp. 
199-207, 2008.  

[10]  A. Yadollahi and Z. Moussavi, "Acoustic 
Obstructive Sleep Apnea Detection," in 
Engineering in Medicine and Biology Society 
(EMBC), 31st Annual International Conference of 
the IEEE, 2009.  

[11]  M. S. Kim, Y. C. Cho, S. Seo, C. Son and Y. Kim, 
"Comparison of Heart Rate Variability (HRV) and 
Nasal Pressure in Obstructive Sleep Apnea (OSA) 
Patients During Sleep Apnea," Measurement, vol. 
45, no. 5, pp. 993-1000, 2012.  

[12]  S. I. Rathnayake, I. A. Wood, U. R. Abeyratne and C. 
Hukins, "Nonlinear features for single-channel 
diagnosis of sleep-disordered breathing diseases," 
IEEE Trans. Biomed. Eng., vol. 57, no. 8, pp. 1973-
1981, 2010.  

[13]  M. M. Nano, X. Long, J. Werth, R. M. Aarts and R. 
Heusdens, "Sleep Apnea Detection Using Time-
Delayed Heart Rate Variability," in Engineering in 
Medicine and Biology Society (EMBC), 37th Annual 
International Conference of the IEEE, 2015.  

[14]  L. Almazaydeh, K. Elleithy and M. Faezipour, 
"Obstructive Sleep Apnea Detection Using SVM-
Based Classification of ECG Signal Features," in 

IEEE International Conference on 
Electro/Information Technology (EIT), 2012.  

[15]  O. C. Celebi, "Celebi Tutorial: Neural Networks and 
Pattern Recognition Using MATLAB," [Online]. 
Available: 
http://www.byclb.com/TR/Tutorials/neural_net
works/ch11_1.htm. 


