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Abstract- Cortical bone is a material with a porous structure. 
The presence of pores creates local stress concentrations and the 
likelihood of premature failure. Assuming that pores are present 
in all bone, vertebral endplates, for example, can subside. 
Subsidence has taken place at rates as high as 77 percent. A 
computational probabilistic assessment of the pore size 
distribution and their contribution to the fracture toughness has 
been presented in this paper. A Monte Carlo simulation was used 
to develop and assign random pores. Also the model compared 
crack sizes to the thickness of the cortical bone present as a 
limiting case. The a/W (crack length to specimen depth) ratio 
was a controlling parameter for the fracture case in support of 
ASTM 399 and published models were used in this research with 
probabilistic distribution of pores. The probabilistic analyses 
presented a conservative solution and may be applicable in 
medical device design. 
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1. Introduction
The cervical spine is a complex section of the 

spinal column. It has several components that work 
together to provide humans with a large range of motion 
[1-8] in the neck and protects the spinal cord. Therefore, 
the recent literature shows how to ensure the health, 
strength and mechanical properties of the vertebrae [9-
28]. The objective of this research is to expand fracture 
toughness considerations in cortical bone. Inherent 
challenges with these types of studies involve varying 
structures of the cortical bone and the interfacial regions 

between cortical and the trabecular structure. Several 
features create voids in cortical bone including 
Haversian canals, Volkmann’s canals canaliculai and 
randomly distributed pores. 

Several studies have investigated the limit of the 
fracture toughness of cortical bone [9-16]. The stress 
intensity factor of bone can be described in terms of 
longitudinal and transverse fracture toughness. 
Longitudinal stress intensity is associated with the long 
axis of long bones, i.e. the femur. Irregular bones 
specifically the vertebrae have a less well defined 
longitudinal and transverse direction. Physiologically 
the load sharing between the trabecular core and the 
endplate is complex phenomena. When a healthy disc is 
present, the endplate is loaded under tensile stresses. 
However, when the disc is replaced the forces 
transferred cause a compressive stress in the endplate. 
However, some regions of the endplate may experience 
tension [29]. The cortical endplate of the vertebral body 
was modeled assuming a simply supported beam, to 
determine the strength of the endplate and its 
mechanical behavior. 

A probabilistic assessment of the toughness was 
developed in the presence of pores [30]. The pores were 
assumed from femur studies compiled from literature 
[31-34] and assumed normally distributed. The 
probabilistic methodology developed here considers 
fracture toughness limits. A beam model was 
constructed with predefined cracks present in the 
tension region of a beam. The tension region of a simply 
supported beam is the area opposite side of the neutral 
axis from the load. The beam models were also 
considered plain stress models. Four fracture models 
were considered that defined the stress intensity at 
crack tips. Three of these models Vashishth [12], 
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Dowling [35] and Feng [15] considered compact tension 
fracture, in plane strain conditions. The fourth model 
was a three point beam bending model constructed by 
Yan [13]. The crack size was examined to determine the 
probability when it would exceed the fracture toughness 
of the bone.    

 

2. Methods 
A unit width was assumed with an initial beam 

length to simplify calculation steps. A mid-sagittal 
section was assumed with a thickness function that was 
developed from studies of the endplate measurements. 
As a result the cross sectional area varied in depth only 

with position along the beam length. A second order 
polynomial fit was developed applied to the data 
presented in Table 1. The model is consistent with 
findings of the cortical endplate distributions. The 
thickest regions are the peripheries of the endplates or 
the ends of the beam by the support and the thinnest 
regions of the endplate are in the center or the middle of 
the beam. Once the geometry was established, an 
assumption was made for the elastic modulus of the 
cortical bone. Several values were investigated and the 
typical range is between 16-20 GPa. This model uses 18.6 
GPa as the modulus of elasticity (E). The beam is 
assumed to behave linear elastically. Modulus data is 
presented in Table 2.

 
Table 1. Thickness data collected from anthropometric vertebral studies. Thicknesses measured along the mid-sagittal plane. 

Mid-Sagittal Vertebral Endplate Thicknesses (mm) 

% Pitzen36 Edwards37 Hulme38 Panjabi39 Inf Sup Tot 

 Inf Sup Inf Sup Inf Sup Inf Sup Ave Ave Ave 

-40 1.025 1.198 0.468 0.39 0.85 0.95 - - 0.781 0.846 0.813 

-25 - - - - - - 0.558 0.796 0.558 0.796 0.677 

-20 0.85 0.9825 0.35 0.374 0.5 0.6 - - 0.567 0.652 0.609 

0 0.6825 0.715 0.374 0.392 0.37 0.42 0.594 0.502 0.505 0.507 0.506 

20 0.9425 0.815 0.362 0.38 0.38 0.41 - - 0.562 0.535 0.548 

25 - - - - - - 0.698 0.524 0.698 0.524 0.611 

40 1.12 0.868 0.394 0.384 0.8 0.75 - - 0.771 0.667 0.719 
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Table 2. Elastic modulus of bone specimens and the method by which they were determined ‘*’ indicates information 
summarized by Bayraktar [20]. 

Reference Region Method Elastic Modulus (GPa) 

*Ulrich21 Femur Head Experimental – FEA 3.5-8.6 

Rho19 Vertebral Trabeculae, Transverse Nanoindentation 13.4 

 Tibia Osteon – Longitudinal Nanoindentation 22.5 

 Tibia Lamallae – Longitudinal Nanoindentation 25.8 

*Hou22 Vertebrae Experimental – FEA 5.7 

*Ladd40 Vertebrae Experimental – FEA 6.6 

*Turner24 Distal Femur Nanoindentation 18.1 

*Zysset25 Femur Neck Nanoindentation 11.4 

*Niebur41 Bovine Tibia Experimental – FEA 18.7 

Bayraktar20 Femur Neck Experimental – FEA 18.0 

Roy23 Endplate – Coronal Nanoindentation 18.0 

 Endplate – Sagittal Nanoindentation 18.0 

 Cortical Shell – Transverse Nanoindentation 18.0 

 Axial Trabeculae – Longitudinal Nanoindentation 22.72 

 Radial Trabeculae – Longitudinal Nanoindentation 16.3 

 Circumfrential Trabeculae Nanoindentation 15.7 

 

The following assumptions were made for this 
paper; cortical bone acts as an isotropic, homogenous, 
linear elastic material, the endplate behaves like a beam, 
the radial cortical shell provides pinned supports for the 
beam, single cracks are normally distributed, influence 
of cracks do not interact with each other, shape factors 
for compact sections apply to individual beam segments, 
the shape function for the beam applies to cracks at any 
position x, and finally uniaxial stress conditions prevail. 

Two load cases were considered as shown in figure 
1: 
 Load Case I 

- Simply supported beam 
- Pin/roller supports 
- Two symmetrically placed static point loads 
- Load simulates disc with poor placement 

mismatch of implant and vertebrae radius 
 Load Case II 

- Simply supported beam  
- Pin/roller supports  

- Uniformly distributed static load  
- Load placed symmetrically on middle 3/4 of 

beam  
- Load simulates disc with good implant and 

vertebrae radius match 

 
The load applied to the beam is of equal force for 

both cases. It is distributed in two different conditions as 
previously described. The first case models an implanted 
disc in contact with the vertebral body in only two points 
of contact (simulating drastic curvature differences the 
design aid of two equal concentrated loads 
symmetrically placed was used) and the second with 
complete contact between an artificial disc and vertebral 
body (where contact is continuous along the length of 
the implant the uniform load partially distributed design 
aid was used.). Physiologically the vertebral body shares 
load between the cortical shell and the trabecular core 
[38]. The magnitude of the load at a minimum comes 
from the head and the contribution of the length of the 
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neck to the level of the vertebrae under consideration. 
Conservatively the entire length of the neck and the 

weight of the head can be considered to act on the 
superior endplate of the vertebrae [42].

 
Figure 1. Loading conditions a) concentrated load and b) distributive load. 

 

The actual load applied was a static load of 200 N. 
The load is also considered purely static without cycling. 
According to anthropometric measurements the weight 
of the head and neck is 8 percent of the total body weight 
of the person under consideration [42]. For a 200 pound 
person that head and neck segment weighs 16 pounds. 
In SI units the head and neck weighs 71.2 N. This is just 
the load from the head and neck which the spine sees 
constantly in an upright position. A larger load was 
considered to investigate more extreme loads. 200 N was 
used as a benchmark. An endplate width and depth was 
estimated from measurements taken of the cervical 
spine [43]. A depth of anterior to posterior was 
estimated at 20 mm. If it is assumed that the entire 
endplate distributes load evenly then on a per unit width 
the 200 N load is divided by 20 mm giving 10 N/mm 
through the depth. Since this theoretical beam is 1 mm 
thick the load applied to the unit width under 
investigation is 10 N. This ensures KIc from reported 
literature can be used as opposed to a lower KIc due to 
cyclic loading.  

The stress was calculated through the length of the 
beam assuming basic beam bending equations in which 
planar sections remain plane. This was done to limit the 
crack opening stresses in the transverse plane and 
eliminating shear that would cause the opening of cracks 
in directions inducing Mode II or Mode III behavior. The 
random pore distribution from cortical femur bone was 
used to develop a distribution of pores within the 
vertebrae. Pore sizes in the vertebrae were assumed 
consistent with femur data [31-34]. This information 
was used as a basis to form a crack. The pores from the 
data were assumed to be circular. This allowed for the 
calculation of the diameter of the pore that was used as 
the basis of the length of the crack. The diameter was 
then considered the nonunion of adjacent differential 

slices on the beam in the tension section creating a sharp, 
through edge crack condition. This crack length was 
important in Mode I crack opening and respective stress 
intensity factors. The crack was also considered a small 
edge crack in a homogenous material. The crack 
direction was perpendicular to the beam section at every 
point consistent with transversely oriented pores in 
vertebral cortical bone [19]. A Monte Carlo extension 
module, RiskAMP [44] (Structured Data, New York), was 
used to create the crack simulation. RiskAMP is a random 
number generator. A truncated normal distribution was 
used to generate the crack lengths. It consisted of a mean, 
standard deviation, maximum and minimum crack 
length. This model assumed a crack from a sample size of 
500. The Monte Carlo simulator establishes the crack 
distribution parameters for every crack position along 
the length of the beam. The large number means the 
distributions are consistent in terms of mean and 
standard deviation. Secondly, it increases the accuracy of 
the results. Porosity data is presented in Table 3. 

The initial crack length is established the stress 
intensity was calculated for each of the initial crack 
lengths. Four models were developed following ASTM 
standards [13-16, 45]. Each of the models introduced a 
shape function: Norman [14] and Feng [15] used a shape 
function for the stress intensity factor developed by 
Behiri and Bonfield. Others [16,35] used a compact 
tension shape function while Yan used a three point 
beam bending function per ASTM E-399 [45].The shape 
functions were, with respect to Mode I crack opening, in 
terms of ‘a’, the initial crack length, and W the width of 
the specimen at that point. In this case the specimen 
width corresponds to the height of the beam. While the 
previously mentioned models are a function of a/W the 
Dowling model is a function of x position along the beam. 
Therefore the beam was divided into 100 differential 
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slices with which to determine the stress intensity. The 
same spots were used with each respective a/W ratio for 
comparison. 

Each of these shape functions and test methods 
had specific specimen size requirements on them 
according to ASTM E399 testing standards. Typically the 
requirement for a/W is in the range of 0.45 to 0.55. Feng 
[15] expanded the a/W initial condition to 0.7. Other 
studies have shown that an increase in the ratio of a/W 
(longer initial crack) increases the resulting Kc value 
with that associated initial condition. ASTM E399 [45] 

recommends test specimen configuration. The point of 
load application is where W is considered to start when 
measuring the ratio of a/W. This theoretical model 
assumes that the load application to each compact 
specimen is supplied by a bending moment 
perpendicular to the crack orientation. The beam model 
has restrictions on the size of the span to width of the 
specimen. This ratio is on the order of 4 to 5. It was 
assumed that the equations would hold for the decreased 
specimen width and plain strain conditions prevail.

 
Table 3. Pore data set used to develop truncated normal distribution. 

  Haversian 
Canals Area 
(µm2) 

Osteon Canals 
Area (µm2) 

Average 
Porosity Area 
(µm2) 

Average 
Measured 
Porosity 
(percentage) 

Wacther34 Max 31244 63959 101337 26 

 Min 665 26390 3100 4 

 Average 4157 41621 19863 9.1 

Wang33 Max 4717 9657 15300 - 

 Min 577 22890 2689 - 

 Average 2633 26362 12581 - 

Fazzalari31 Average 13704 137210 65481 30 

Bell32 Average 5510 55170 26329 12.1 

 
An initial crack length ‘a’ was estimated and 

corresponding stress intensity factor calculated. A limit 
crack length was then determined based on the fracture 
toughness of transverse cortical bone. Once the critical 
crack length was determined the probability of a crack 
existing with a shorter length was determined. The 
analysis shows Haversian canals long axis oriented in the 
axial plane [46]. Because of the orientation of the osteons 
cracks would grow perpendicular to the long axis of the 
osteon. However when a crack grows into an osteon, it 
would wrap around the osteon thereby increasing the 
stress intensity value as compared to a crack growing 
parallel to the osteons long axis, crack would open the 
osteons like a zipper. Once the size of the transition crack 
length was determined a comparison made to the 
distribution of cracks at the same spot along the beam 
developed by the Monte Carlo simulations. 

3.  Results 
The probability of a crack length shorter than the 

critical length was determined for both, Load Case 1 and 
Load Case 2. These results are shown in Figures 2 and 3. 
It can be seen that the Yan beam model [16] is the most 
conservative model. For case 1 and case 2, 90 percent of 
the beam was too thin for the presence of any crack. 
Stated another way the minimum length of cracks sizes 
present created an a/W ratio was too large for the depth 
of the beam at the corresponding point. A three point 
beam model does not accurately reflect the support of 
the trabecular core, which reduces the span length. 
While the support is not the same as in a bend test a 
modification to the span coefficient may yield results 
closer to that of the other model.
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Figure 2. The probability the present crack is less than the crack limit, Load Case 1. 
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Figure 3. The probability the present crack is less than the crack limit, Load Case 2.

Corresponding to the position of the beam 
allowable crack length values were presented for the two 
load cases (Figures 4 and 5). A critical crack length was 
determined by solving for the crack length at the 
transverse critical stress intensity. Yan’s model [13] was 
the least likely to have subcritical crack lengths, with the 
exception of small distances from the supports. 
Additionally Dowling’s model is the most likely to have a 
subcritical crack present with Vashishth’s model in the 
middle. 

For both load crack present would be critical 
thereby exceeding the critical transverse stress 
intensity. Dowling’s mode scenarios it is clear that all 
three models show similar behavior. Vashishth’s model 
[16] indicates that a large portion of the beam model 
would contain subcritical cracks. However towards the 
center of the beam negative crack lengths arose. This 
indicates any l [35] created a ceiling for the amount of 
permissible cracks. The crack limit threshold was also 
greater for every point along the beam than the 
Vashishth and Yan models.
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Figure 4. The calculated crack limit case per length of the beam, Feng intentionally excluded, Load Case 1.
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Figure 5. The calculated crack limit case per length of the beam, Feng intentionally excluded, Load Case 2. 

Figures 6 through 7 show the probability of the 
presence of a supercritical crack. For both load case 1 
and 2 data is accumulated around 6 MNm3/2. This 
indicates that at each stress intensity value there is a 
probability of exceeding or not exceeding bone’s 
transverse critical stress intensity. When a prediction 
equation is fit to the data the trends for all four fracture 
models using the probabilistic methods were to the left 
hand side of a majority of the original models. This 
indicates a conservative prediction for the existence of a 
supercritical crack. This would mean that device design 
based on this method would be more conservative in 
predicting subsidence and the onset of yielding and/or 

fracture. For both load cases 1 and 2 the most 
conservative prediction model was Dowling’s model 
followed by a close tie between Feng and Vashishth’s 
model with Yan’s model being the least conservative. 

 
4.  Discussion and Conclusion 

This research develops a probabilistic assessment 
method for determining the presence of cracks of 
sufficient length to exceed the critical fracture toughness 
of bone. This technique is needed because the porous 
structure of bone causes stress concentrations that 
initiate failure before bone reaches its yield stress. This 
is important because bone failure cannot be 
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characterized by yield mechanics of gross material 
properties alone. The work expands bone fracture 
research to a non ASTM standard model. This expanded 
work increases the applicability of the fracture work to 

areas of biological crack mechanics not well described by 
ASTM specimen size requirements. It also establishes the 
presence of pores that change the type of failure that is 
considered mechanically
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Figure 6. Probability distribution prediction of crack length exceeding limit with respect to the stress 

intensity generated along the beam, Load Case 1.
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Figure 7: Probability distribution prediction of crack length exceeding limit with respect to the stress intensity generated along 

the beam, Load Case 2. 
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This model assumes that plain strain stress 
intensity applies to the beam model because of the size 
constraints of the vertebral cortical bone. It was assumed 
that there would be no interaction between plain strain 
and plain stress. Mode I is assumed to act independently 
of Mode’s II and III. The entire applied load was 
considered to activate Mode I only. The Vashishth ’04 
[16] model predicts 52% of the Case 1 and 65% of the 
Case 2 beams cannot meet a minimum required crack 
limit. The Dowling, which is also based on a compact 
tension model, has the highest probability of a crack 
below the fracture limit. In Case 1 the entire beam had a 
chance of the strength being governed by yielding. This 
is most likely due to the maximum moment. The max 
moment from Case 1 is 12.5 Nmm while the max moment 
for Case 2 is 31.3 Nmm. While the load was the same the 
moment distribution tends to increase. Dowling’s model 
also consists of a discrete moment at each section of the 
beam. This moment can be found directly from the 
bending equations. 

Differences in the probability are most likely 
attributed to the shape factor. Feng’s models have an 
entirely random distribution that seems to be more 
dependent on crack length than it does on the amount of 
stress at each point. The Feng model differs from the 
previous three models in this respect. The other three 
models tend to be more dependent on the stress applied 
to the differential sections as opposed to being 
controlled by the crack length as with the Feng model. 
The Yan beam model [13] is the least conservative limit 
in both case 1 and case 2 for the stress intensity factor. 
This seems to be due in strong part to the span multiplier 
present in the equation for KI. For the case of vertebral 
endplate tissue separated from the cancellous core, a 
value of 20 mm would be correct if compared to three-
point beam testing. This is an overestimate of the stress 
intensity value at points along the length because the 
trabecular core supports the vertebral endplate at 
intervals closer than the 20 mm span. The stress 
intensity values calculated by the Vahishth and Feng 
models are the most similar with the Dowling model 
being the least conservative model for both load case 1 
and 2. The shape function of Dowling’s model 
undervalues applied stress compared to other models. 
That does not necessarily mean that a crack above the 
crack limit threshold exists there. The probability of 
exceeding the threshold crack limit was calculated verse 
the KI value. A Weibull cumulative distribution plot 
(CDF) was used to describe the probability as a function 
of KI. The Weibull equation and the probability domain 

were graphically cut off after the point at which the crack 
threshold maintained 100% probability. This theoretical 
model produced the probability of a threshold crack 
based on a limiting Kc of 6 MNm3/2. The randomized 
values are grouped around the transverse Kc limit of 6. 
The probability of a sufficient crack was fit with a 
Weibull continuous distribution function (CDF) [47] in 
the form of the equation: 

 

𝑃(𝑥) = 1 − 𝑒
−(

𝑥

𝛿
)
𝛽

     (1) 
 

This model is also limited to Mode I, tensile, failure. 
Bone is subjected to more than tensile forces. Expanding 
the study to consider Mode II and III fracture and the 
associated probabilities of fracture would improve bone 
strength assessments. This research does not consider 
the overall reduction in strength; however, it could be 
included in the analysis as a reduction to bending stress 
or deflection limits. It is also recommended to further 
examine the length multiplier for the Yan beam model. A 
shorter unsupported length would give more a 
representative stress intensity values per crack length. 
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