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Abstract- Time-dependent pulsatile pressure and flow 
waveforms in the aorta carry with them considerable 
information regarding the underlying dynamic behavior of the 
cardiovascular system.  The aortic pressure-flow relationship 
has traditionally been described using integer calculus. As such, 
periodicity and linear system assumptions are necessarily 
imposed to extract hemodynamic information.  We introduce the 
use of fractional calculus (FC) to relate minimally-invasive 
measurements, of the velocity of aortic blood flow with an 
esophageal Doppler monitor, to the derived aortic pressure.  The 
basis for this research is a Taylor series model of the velocity of 
aortic blood flow with subsequent term-by-term fractional 
integration as well as fractional differentiation. These results 
demonstrate that this FC approach could potentially generate 
the aortic pressure waveform throughout systole.  Further 
studies of its first derivative, or the time rate of pressure change, 
𝑑𝑃

𝑑𝑡
 , may also allow its maximal value, 𝑚𝑎𝑥 (

𝑑𝑃

𝑑𝑡
), to be computed 

for use as an index of left ventricle contractility when 
noninvasive ultrasound Doppler flow velocity is available in the 
clinical setting. 

Keywords: Fractional calculus, Aortic blood flow, 
Esophageal Doppler monitor, Differintegral, 
Differintegration. 
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1. Introduction
Hemodynamic diagnosis and clinical management 

often focus on blood pressure and flow measurements 
and subsequent analysis of their temporal relationship 
[1]. Routine catheterization can readily provide left 
ventricular pressure and aortic pressure, as well as 
cardiac output, from thermodilution. However, beat-to-
beat flow measurements are less common. On the other 
hand, ultrasound Doppler echocardiography can provide 
images of cardiac and large vessel structures as well as 
blood flow velocity. Nonetheless, the aortic blood 
pressure waveform cannot be obtained.  

Noninvasive or minimally-invasive approaches are 
preferred methods for routine clinical diagnosis and 
follow-up.  Tonometer-based measurements, of blood 
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pressure overlying the carotid artery, have been 
common [2], but are much less frequently used in 
conjunction with Doppler ultrasound in the clinical 
setting.  It is possible to derive central aortic pressure 
when the Doppler ultrasound aortic flow velocity is 
known [3], [4].  These latter traditional hemodynamic 
models are typically based upon a linear second-order 
system utilizing the acceleration, velocity, and 
displacement of blood flow [5]. By convention, 
acceleration is defined as the first derivative of velocity, 
with respect to time, whereas displacement is its 
indefinite integral.  In contradistinction, fractional 
calculus (FC) is based upon both integer and non-integer 
differentiation as well as integer and non-integer 
integration [6], [7]. 

 

2. Related Work 
FC, although three centuries-old, has recently 

found applications in the analysis of biological systems.  
For instance, Djordjevic et al. [8] developed a rheological 
model of airway smooth muscle cells using a method 
incorporating FC and a least-squares data fitting 
technique.  They showed that FC could be effectively 
utilized to account for a weak power law frequency 
dependence of cell rheological behavior. This effect could 
not be explained with traditional viscoelastic theory. 
Recently, an FC dynamic model has been applied to 
generate electrocardiogram (ECG) signals based upon 
oscillations and a global optimization scheme. This 
technique subsequently generates a realistic time series, 
of the ECG signal, and may find potential applications in 
modeling abnormal and irregular patterns of cardiac 
conduction [9]. 

We have considerable experience with the use of 
esophageal Doppler monitor (EDM) for minimally-
invasive measurement of the aortic flow velocity 
waveform [5].  This paper provides the first such 
application of FC to minimally-invasive hemodynamic 
studies and demonstrates how FC-based modelling 
could be effectively utilized in understanding the aortic 
pressure-flow relationship during systole.  

  

3. Methods 
3.1. Fractional Calculus 

To cognize this application of FC, traditional 
integer differentiation is first examined for a power 
function of time:  

  
𝑓(𝑡) =  𝑡𝑚   .                                                                              (1) 
 

𝑓′(𝑡) = 𝑚𝑡(𝑚−1)     .                                                                 (2) 
 
𝑓′′(𝑡) = 𝑚(𝑚 − 1)𝑡(𝑚−2)     .                                                (3) 
 

𝑓′′′(𝑡) = 𝑚(𝑚 − 1)(𝑚 − 2)𝑡(𝑚−3)     .                               (4)  
The nth repetitive integer differentiation process can 
therefore be summarized as: 

 
𝑑𝑛𝑓

𝑑𝑡𝑛
=
(𝑚!)𝑡(𝑚−𝑛)

(𝑚−𝑛)!
   𝑤ℎ𝑒𝑟𝑒 𝑚 ≥ 𝑛    .                                     (5) 

 
In a likewise manner, the nth repetitive integer 

integration process can also be examined for a power 
function of time:             

 
𝑓(𝑡) =  𝑡𝑚   .                                                                              (6)  

 

∫𝑓(𝑡)𝑑𝑡 =
𝑡(𝑚+1)

𝑚+1
     .                                                                                       (7) 

 

∫∫𝑓(𝑡)𝑑𝑡𝑑𝑡 =
𝑡(𝑚+2)

(𝑚+1)(𝑚+2)
  .                                                 (8) 

 

∫∫∫𝑓(𝑡)𝑑𝑡𝑑𝑡𝑑𝑡 =
𝑡(𝑚+3)

(𝑚+1)(𝑚+2)(𝑚+3)
  .                                    (9)                        

 

∫…∫𝑓(𝑡)𝑑𝑡 …𝑑𝑡⏟          
𝑛

=
𝑑−𝑛𝑓

𝑑𝑡−𝑛
=
(𝑚!)𝑡(𝑚+𝑛)

(𝑚+𝑛)!
      .                             (10)                                                 

  
Note that a constant of integration can be utilized 

after the completion of the repetitive integration process. 
Thus, using either (5) or (10), repetitive differentiation 
or repetitive integration can be similarly accomplished 
using either positive or negative values for n 
respectively.  

The gamma function Γ(𝑥) can be defined as [10]:  
 

Γ(𝑥) = lim
𝜇→∞

𝜇𝑥

𝑥
(
1

𝑥+1
) (

2

𝑥+2
)…(

𝜇

𝑥+𝜇
)      

 

          = 𝑙𝑖𝑚
𝜇→∞

1

𝑥
𝜇𝑥∏ (1 +

𝑥

𝑗
)
−1

𝜇
𝑗=1    .                                   (11)  

 
Note that the gamma function is not defined for 

values of x equal to either zero or negative integer values. 
Furthermore, when x is a positive integer, the gamma 
function has the following property: 

 
Γ(𝑥) = (𝑥 − 1)!     .                                                                     (12)                                                                
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Additionally, Γ(𝑥) “smoothly connects” the integer 
values of the factorial function. It is therefore suitable for 
defining non-integer factorial values. The gamma 
function is illustrated in Figure 1. 

 
Figure 1. The gamma function is useful in determining non-
integer values of the factorial function. It is not defined for 

zero and negative integer values 
 

Equations (5) and (10) can then be modified to 
utilize the gamma function:  
 
𝑑𝑞𝑓

𝑑𝑡𝑞
=
Γ(𝑚+1)𝑡(𝑚−𝑞)

Γ(𝑚−𝑞+1)
         .                                                  (13) 

 
Equation (13) can be used as the definition of the 

differintegral [11]. Where q can have a positive value; 
either integer or non-integer. 1, 2 Note that q can also take 
on integer or non-integer negative values:3  
 

∫…∫𝑓(𝑡)𝑑𝑡 …𝑑𝑡⏟          
𝑞

=
𝑑−𝑞𝑓

𝑑𝑡−𝑞
=
Γ(𝑚+1)𝑡(𝑚+𝑞)

Γ(𝑚+𝑞+1)
   .               (14)                                                       

 
The term q is referred to as the order of 

differintegration [12]. Additionally, 𝑓(𝑡) =
𝑑𝑞𝑓

𝑑𝑡𝑞
|
𝑞=0  

. As 

previously stated, (0) is not defined. The gamma 
function is also not defined for negative integer values. 
Thus, specific fractional derivatives, or fractional 
integrals, may be unattainable.   

Owing to either the positive or negative value of q 
in (13), the differintegral can therefore be utilized for the 
fractional differentiation, or fractional integration, of 

                                                 
1However, q cannot take on integer values equal to such 
quantities as: (m + 1) or (m + 2) or (m + 3), etc.  

 

power functions. Furthermore, using FC, differentiation 
and integration may possibly be represented as a 
continuous process rather than discrete processes.   
                                                            
3.2. Fractional Calculus and the Taylor Series of an 
Exponential Function 

The Taylor series for an exponential function is:  
 

𝑒−𝑔∙𝑡 = ∑
(−𝑔 ∙ 𝑡)𝑛

𝑛!

𝑁

𝑛=0

 

 

           =
(−𝑔∙𝑡)0

0!
+
(−𝑔∙𝑡)1

1!
+
(−𝑔∙𝑡)2

2!
…+

(−𝑔∙𝑡)𝑁

𝑁!
.           (15) 

 
Thus, for a sufficiently large N, an exponential 

function can be accurately approximated as a summation 
of power functions. Using the above methodology, the 
Taylor series for an exponential can therefore be term-
by-term fractionally differentiated or fractionally 
integrated: 
 

𝑑𝑞(𝑒−𝑔∙𝑡)

𝑑𝑡𝑞
= ∑{

(−𝑔)𝑛

𝑛!
∙ [
Γ(𝑛 + 1)𝑡(𝑛−𝑞)

Γ(𝑛 − 𝑞 + 1)
]}

𝑁

𝑛=0

    .        (16) 

           For mathematical purposes, t cannot equal zero 
and be raised to a negative power. However, t can take 
on positive near-zero values. Negative values of t can also 
yield complex results. To further reiterate, care must be 
used when selecting integer values of q to prevent 

undefined values of the gamma function from occurring. 
 
4. Examining the Velocity of Aortic Blood Flow 

The esophageal Doppler monitor (EDM) is 
frequently utilized to assess the velocity of aortic blood 
flow during systole. The EDM allows clinicians to 
accurately assess patients’ cardiac output and stroke 
volume during anesthesia and critical care conditions 
[13]. Figure 2 illustrates this waveform. 

This velocity, v(t), can be modelled as [5]: 
 

𝑣(𝑡) = 𝛼𝛽𝑒−𝛾𝑡 (1 −
𝑡

𝐹𝑇
) 𝑡             0 < 𝑡 < 𝐹𝑇     .           (17)     

                                                                                 

2Imaginary and complex values of q can also be utilized. 
However, these will not be addressed in this introductory 
paper.  

3Note that an alternative terminology could be that of 
fractional derivatives and fractional antiderivatives.  
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Where  represents an acceleration term and  is 
a dimensionless gain. The time spent in systole is 
referred to as flow time, FT. It should be noted that can 
be determined [5]: 

𝛾 =
2 – (

𝐹𝑇

𝐹𝑇𝑝
)

(𝐹𝑇𝑝 – 𝐹𝑇)
         0 < 𝐹𝑇𝑝 < 𝐹𝑇       .                 (18) 

 

 
Figure 2. The velocity of aortic blood flow as measured by an 

EDM. Note that PV represents peak velocity whereas FT 
signifies the time spent in systole. The time at which PV 

occurs is referred to as FTp [5] 
 

Note that FTp represents the time at which peak 
velocity (PV) occurs. This is illustrated in Figure 2. Using 
a Taylor series, v(t) can subsequently be approximated 
as a time-based power function: 
 

𝑣(𝑡) = 𝛼𝛽(∑
(−𝛾)𝑛∙(𝑡)(𝑛+1)

𝑛!
𝑁
𝑛=0 −

1

𝐹𝑇
∑

(−𝛾)𝑛∙(𝑡)(𝑛+2)

𝑛!
)        𝑁

𝑛=0 0 < 𝑡 < 𝐹𝑇.                      (19)            

 
By means of the aforementioned technique, 

fractional derivatives and fractional integrals of v(t) can 
then be determined: 

 

                                                 
4 This dimension is equivalent to m·s0.7. 

Figure 3 demonstrates the continuous 
differintegral (20) over the range:  −1 ≤ 𝑞 ≤ 1. 

 
Figure 3. Equation (20), the velocity of aortic blood flow 

during systole, v(t), represented as a continuous 
differintegral. Note that fractional integration is associated 

with −1 < q < 0 whereas fractional differentiation is 

associated with 0 < q < 1. Furthermore,  𝑣(𝑡) =
𝑑𝑞𝑣

𝑑𝑡𝑞
|
𝑞=0  

 

 

5. Numerical Assessment 
Using MATHCAD (PTC Corp., Needham, MA, USA) 

v(t) can be calculated utilizing the numerical values from 
Table 1. Subsequently, its differintegrals of order −0.7 
and 0.1 can both be determined. These functions are 
illustrated in Figure 4.   

Note that the dimension associated with v(t) is m/s 

whereas that of  
𝑑(−0.7)𝑣

𝑑𝑡(−0.7)
  is m/s(−0.7).4 Furthermore, the 

dimension of  
𝑑(0.1)𝑣

𝑑𝑡(0.1)
 is m/s0.1.  
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𝑑𝑞𝑣

𝑑𝑡𝑞
= 𝛼𝛽 [∑

(−𝛾)𝑛∙Γ(𝑛+2)∙(𝑡)(𝑛+1−𝑞)

𝑛!∙Γ(𝑛+2−𝑞)
𝑁
𝑛=0 −

1

𝐹𝑇
∑

(−𝛾)𝑛∙Γ(𝑛+3)∙(𝑡)(𝑛+2−𝑞)

𝑛!∙Γ(𝑛+3−𝑞)
𝑁
𝑛=0 ]          0 < 𝑡 < 𝐹𝑇         (20) 
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Table 1. Numerical values used for initial computational 
purposes 

Term Value Units Notes 

 7.25 m/s2 acceleration  

 3.00 dimensionless gain 

 6.154 s-1 exponential 
decay 

FT 0.36 s flow time 
FTp 0.1 s time to peak flow 

a −0.7 dimensionless order of 
fractional 

differintegration 
b 0.1 dimensionless order of 

fractional 
differintegration 

 
6. The Systolic Pressure-Flow Relationship in 
the Aorta 

Using (20), a straightforward model of aortic blood 
pressure, P(t), as a function of the velocity of aortic blood 
flow during systole is: 
 

𝑃(𝑡) =
𝑑0𝑃

𝑑𝑡0
=  𝑘𝜋𝑟2 (𝑍𝑎

𝑑𝑎𝑣

𝑑𝑡𝑎
+ 𝑍𝑏

𝑑𝑏𝑣

𝑑𝑡𝑏
) + 𝐶   .              (21) 

 

Where r represents the radius of the aorta, and a 
and b are both velocity-based differintegrals of order 
−0.7 and 0.1 respectively. The term Za is “reactance-like” 
and would be analogous to a combination of elastance 
and resistance.  Whereas Zb would be analogous to a 
combination of inertia and resistance. Furthermore, C is 
a constant of integration and k converts units of Pascals 
to mmHg. In addition: 
 
𝑑𝑎𝑣

𝑑𝑡𝑎
|
𝑡=0  

= 
𝑑𝑏𝑣

𝑑𝑡𝑏
|
𝑡=0  

= 0     .                                          (22)   

                                  

 
Figure 4. Velocity as a function of time, v(t), and both its 

associated differintegrals of order −0.7 and 0.1 are displayed 
 

So that C also functions as an initial condition. 
Moreover, for the purposes of this preliminary 
assessment, a “trial and error” technique was employed 
to determine numerical values for a, b and Za and Zb. 
These are displayed in Table 2. Note that Za and Zb have 
magnitudes which are “ballpark approximate” to those of 
traditionally-derived resistance, elastance, and inertia. 

The above model can also be utilized to assess 
𝑑𝑃

𝑑𝑡
 

during systole: 

 
𝑑𝑃

𝑑𝑡
=  𝑘𝜋𝑟2 (𝑍𝑎

𝑑(𝑎+1)𝑣

𝑑𝑡(𝑎+1)
+ 𝑍𝑏

𝑑(𝑏+1)𝑣

𝑑𝑡(𝑏+1)
)   .                         (23)                                                                         

 

Both P(t) and 
𝑑𝑃

𝑑𝑡
 are illustrated in Figure 5. Note 

that a positive near-zero initial value for t, instead of 
zero, has to be used in (23) to prevent a “division by 
zero” singularity error from occurring. 

 

Table 2. Numerical values used for final computational 
purposes 

Term Value Units Notes 

C 80 mmHg constant of 

integration 

k 0.0075 mmHg/Pascal unit 

conversion 

r 0.011 m aortic radius 

Za 3.157·107 N·sa/m5 “reactance-

like” term 

Zb 7.015·106 N·sb/m5 “reactance-

like” term 
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Figure 5. Using fractional calculus, P(t) is modelled using 

differintegrals which are based upon the velocity of aortic 

blood flow during systole. Note that 
𝑑𝑃

𝑑𝑡
 is also displayed 

 
Straightforward linear algebraic techniques could 

also be applied. This would allow “real-time” or beat-to-
beat assessment of the “reactance-like” terms, Za and Zb. 
The following matrix relationship is derived using (21): 

 

𝑘𝜋𝑟2 ∙ [

𝑑𝑎𝑣

𝑑𝑡𝑎
|
𝑡=𝑡𝑠  

𝑑𝑏𝑣

𝑑𝑡𝑏
|
𝑡=𝑡𝑠  

𝑑𝑎𝑣

𝑑𝑡𝑎
|
𝑡=𝑡𝑒𝑠  

𝑑𝑏𝑣

𝑑𝑡𝑏
|
𝑡=𝑡𝑒𝑠  

] ∙ [
𝑍𝑎
𝑍𝑏
] = [

𝑃𝑠
𝑃𝑒𝑠
]    .          (24)                                                                                       

 
Thus: 
 

[
𝑍𝑎
𝑍𝑏
] =

1

𝑘𝜋𝑟2

{
 
 

 
 

[

𝑑𝑎𝑣

𝑑𝑡𝑎
|
𝑡=𝑡𝑠  

𝑑𝑏𝑣

𝑑𝑡𝑏
|
𝑡=𝑡𝑠  

𝑑𝑎𝑣

𝑑𝑡𝑎
|
𝑡=𝑡𝑒𝑠  

𝑑𝑏𝑣

𝑑𝑡𝑏
|
𝑡=𝑡𝑒𝑠  

]

−1

∙ [
𝑃𝑠
𝑃𝑒𝑠
]

}
 
 

 
 

     .     (25) 

 
6. Discussion and Conclusion 

Noninvasive assessment, of the hemodynamics 
within large arteries such as the aorta, has been limited, 
although invasive means have been commonplace in the 
clinical setting through catheterization [1], [14]. 
Advanced imaging modalities can provide geometric and 
detailed structural changes, but the dynamic properties 
of the pressure-flow relationship is typically not 
obtainable. Esophageal Doppler ultrasound 
measurements, of aortic blood flow velocity, have been 

demonstrated as a useful minimally-invasive clinical tool 
[15]. However, central aortic pressure cannot be 
obtained noninvasively.   

Applanation tonometry, applied to peripheral 
arteries such as the carotid and radial, has been reported 
for noninvasive monitoring of both pulsatile pressure 
waveforms and arterial compliance [16]. Subsequently, 
these recorded peripheral waveforms have also been 
used to derive central aortic pressure waveforms via a 
transfer function. Clinically, these have been applied to 
obtain the augmentation index [17] and to assess 
vascular stiffness.   But the temporal aspects, of the aortic 
pressure-flow relationship through minimally-invasive 
means, has yet to be demonstrated. 

We have introduced a technique, based on FC, for 
potentially deriving the temporal relationship of aortic 
pressure and flow throughout systole. The minimally-
invasive measurement of the velocity of aortic blood flow 
is accomplished with an EDM; although this can also be 
obtained with a transthoracic Doppler 
echocardiographic monitor; which is commonly utilized 
in many clinics.  

Our approach is novel in that the Taylor series 
expansion of an exponential function was applied to 
allow term-by-term fractional differentiation and 
fractional integration. A closely related work using FC 
was performed by Craiem and Armentaro [18] who 
examined the power-law stress-strain relationship 
within sheep aorta; through simultaneous 
measurements of pulsatile aortic pressure and diameter. 
They were able to account for a dynamic frequency-
dependent elastic modulus [19]. 

The rate of rise of aortic pressure 
𝑑𝑃

𝑑𝑡
 and flow 

velocity 
𝑑𝑣

𝑑𝑡
  both have a close relationship with 

myocardial performance; particularly their peak values, 

𝑚𝑎𝑥 (
𝑑𝑃

𝑑𝑡
)and 𝑚𝑎𝑥 (

𝑑𝑣

𝑑𝑡
) [20]. Thus, the minimally-

invasive assessment of left ventricle contractility is 
potentially possible using an FC model.   
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